Skip to main content
Log in

Sums of divisor functions in \(\mathbb {F}_q[t]\) and matrix integrals

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the mean square of sums of the kth divisor function \(d_k(n)\) over short intervals and arithmetic progressions for the rational function field over a finite field of q elements. In the limit as \(q\rightarrow \infty \) we establish a relationship with a matrix integral over the unitary group. Evaluating this integral enables us to compute the mean square of the sums of \(d_k(n)\) in terms of a lattice point count. This lattice point count can in turn be calculated in terms of a certain piecewise polynomial function, which we analyse. Our results suggest general conjectures for the corresponding classical problems over the integers, which agree with the few cases where the answer is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Adapted to our averaging method, Tong’s constant is \(c_k = \frac{2^{2-1/k}-1}{(4k-2)\pi ^2} \sum _{n=1}^\infty \frac{ d_k(n)^2}{n^{1+\frac{1}{k}}}\).

  2. The statement of [28, Theorem A], which deals with all moments, includes a term which is not small for the second moment; however the actual proof, see [28, Equation 9.8 and below] does give a good remainder.

References

  1. Andrade, J.C., Bary-Soroker, L., Rudnick, Z.: Shifted convolution and the Titchmarsh divisor problem over \(\mathbb{F}_q[T]\). Philos. Trans. A 373, 20140308–20140318 (2040)

    Article  MATH  Google Scholar 

  2. Baryshnikov, Y.: GUEs and queues. Probab. Theory Rel. Fields 119, 256–274 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blomer, V.: The average value of divisor sums in arithmetic progressions. Q. J. Math. 59, 275–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bump, D.: Lie groups. Graduate texts in mathematics, vol. 225. Springer, New York (2004)

  5. Bump, D., Gamburd, A.: On the averages of characteristic polynomials from classical groups Comm. Math. Phys. 265(1), 227–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conrey, J.B., Gonek, S.M.: High moments of the Riemann zeta-function. Duke Math. J. 107(3), 577–604 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Autocorrelation of random matrix polynomials. Commun. Math. Phys. 237, 365–395 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conrey, J.B., Farmer, D.W., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Integral moments of \(L\)-functions. Proc. Lond. Math. Soc. 91(3), 33–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coppola, G., Salerno, S.: On the symmetry of the divisor function in almost all short intervals. Acta Arith. 113(2), 189–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cramér, H.: Über zwei Sätze des Herrn G. H. Hardy. Math. Z 15(1), 201–210 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davenport, H.: On a principle of Lipschitz. J. Lond. Math. Soc. 26, 179–183 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davenport, H.: Corrigendum: on a principle of Lipschitz. J. Lond. Math. Soc. 39, 580 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diaconis, P., Gamburd, A.: Random matrices, magic squares and matching polynomials. Electron. J. Comb. 11(2), 26 (2004/06) (Research Paper 2)

  14. Ehrhart, E.: Sur un probleme de geometrie diophantienne lineaire II. J. Reine Angew. Math. 227, 2549 (1967)

    Google Scholar 

  15. Fouvry, É., Ganguly, S., Kowalski, E., Michel, P.: Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions. Comment. Math. Helv. 89(4), 979–1014 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fouvry, É., Ganguly, S., Kowalski, E., Michel, P.: On the exponent of distribution of the ternary divisor function. Mathematika, 1–24 (2015). doi:10.1112/S0025579314000096, arXiv:1304.3199 [math.NT]

  17. Gamburd, A.: Some applications of symmetric functions theory in random matrix theory. LMS Lect. Note Ser. 341, 143–170 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Heath-Brown, D.R.: The distribution and moments of the error term in the Dirichlet divisor problem. Acta Arith. 60(4), 389–415 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ivić, A.: On the mean square of the divisor function in short intervals. J. Théor. Nombres Bordeaux 21(2), 251–261 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ivić, A.: On the divisor function and the Riemann zeta-function in short intervals. Ramanujan J. 19(2), 207–224 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jutila, M.: On the divisor problem for short intervals. Studies in honour of Arto Kustaa Salomaa on the occasion of his fiftieth birthday. Ann. Univ. Turku. Ser. A I(186), 23–30 (1984)

    Google Scholar 

  22. Katz, N.M.: On a question of Keating and Rudnick about primitive Dirichlet characters with squarefree conductor. Int. Math. Res. Not. 2013(14), 3221–3249 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Katz, N.M.: Witt vectors and a question of Keating and Rudnick. Int. Math. Res. Not. 2013(16), 3613–3638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keating, J.P.: Symmetry transitions in random matrix theory and L-Functions. Commun. Math. Phys. 281, 499–528 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Keating, J.P., Rudnick, Z.: The variance of the number of prime polynomials in short intervals and in residue classes. Int. Math. Res. Not. (2012). doi:10.1093/imrn/rns220

    MATH  Google Scholar 

  26. Keating, J.P., Rudnick, Z.: Squarefree polynomials and Möbius values in short intervals and arithmetic progressions. Algebra Number Theory 10(2), 375–420 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kösters, H.: On the occurrence of the sine kernel in connection with the shifted moments of the Riemann zeta function. J. Number Theory 130, 2596–2609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kowalski, E., Ricotta, G.: Fourier coefficients of GL(N) automorphic forms in arithmetic progressions. Geom. Funct. Anal. 24, 1229–1297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lau, Y.K., Zhao, L.: On a variance of Hecke eigenvalues in arithmetic progressions. J. Number Theory 132(5), 869–887 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lester, S.: On the variance of sums of divisor functions in short intervals. Proc. Amer. Math. Soc. 144(12), 5015–5027 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lester, S., Yesha, N.: On the distribution of the divisor function and Hecke eigenvalues. Israel J. Math. 212(1), 443–472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Milinovich, M.B., Turnage-Butterbaugh, C.L.: Moments of products of automorphic L-functions. J. Number Theory 139, 175–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Motohashi, Y.: On the distribution of the divisor function in arithmetic progressions. Acta Arith. 22, 175–199 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Olshanksi, G.: Projections of orbital measures, Gelfand–Tsetlin polytopes, and splines. J. of Lie Theory 23(4), 1011–1022 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Schmidt, W.M.: Northcott’s theorem on heights II. The quadratic case. Acta Arith. 70(4), 343–375 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shiu, P.: A Brun–Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313, 161–170 (1980)

    MathSciNet  MATH  Google Scholar 

  37. Soundararajan, K.: Moments of the Riemann zeta function. Ann. Math. 170(2), 981–993 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stanley, R.P.: Enumerative combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999)

  39. Titchmarsh, E.C.: The theory of the Riemann zeta-function, 2nd edn. In: Heath-Brown, D.R. (ed.) Oxford University Press, New York (1986)

  40. Tong, K.C.: On divisor problems III. Acta Math. Sin. 6, 515–541 (1956)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Keating.

Additional information

JPK gratefully acknowledges support under EPSRC Programme Grant EP/K034383/1 LMF: L-Functions and Modular Forms, a grant from Leverhulme Trust, a Royal Society Wolfson Merit Award, a Royal Society Leverhulme Senior Research Fellowship, and by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-10-1-3088. ZR is similarly grateful for support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement No. 320755, and from the Israel Science Foundation (Grant No. 925/14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keating, J.P., Rodgers, B., Roditty-Gershon, E. et al. Sums of divisor functions in \(\mathbb {F}_q[t]\) and matrix integrals. Math. Z. 288, 167–198 (2018). https://doi.org/10.1007/s00209-017-1884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1884-1

Navigation