Skip to main content

Advertisement

Log in

Establishing a common metric for self-reported pain: linking BPI Pain Interference and SF-36 Bodily Pain Subscale scores to the PROMIS Pain Interference metric

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

The study purposes were to mathematically link scores of the Brief Pain Inventory Pain Interference Subscale and the Short Form-36 Bodily Pain Subscale (legacy pain interference measures) to the NIH Patient-Reported Outcome Measurement Information System (PROMIS®) Pain Interference (PROMIS-PI) metric and evaluate results.

Methods

Linking was accomplished using both equipercentile and item response theory (IRT) methods. Item parameters for legacy items were estimated on the PROMIS-PI metric to allow for pattern scoring. Crosswalk tables also were developed that associated raw scores (summed or average) on legacy measures to PROMIS-PI scores. For each linking strategy, participants’ actual PROMIS-PI scores were compared to those predicted based on their legacy scores. To assess the impact of different sample sizes, we conducted random resampling with replacement across 10,000 replications with sample sizes of n = 25, 50, and 75.

Results

Analyses supported the assumption that all three scales were measuring similar constructs. IRT methods produced marginally better results than equipercentile linking. Accuracy of the links was substantially affected by sample size.

Conclusions

The linking tools (crosswalks and item parameter estimates) developed in this study are robust methods for estimating the PROMIS-PI scores of samples based on legacy measures. We recommend using pattern scoring for users who have the necessary software and score crosswalks for those who do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IASP Task Force on Taxonomy. (1994). Part III: Pain terms—A current list with definitions and notes on usage. In H. Merskey & N. Bogduk (Eds.), Classification of chronic pain (pp. 209–214). Seattle, WA: IASP Press.

    Google Scholar 

  2. Goldberg, D. S., & McGee, S. J. (2011). Pain as a global public health priority. BMC Public Health, 11, 770.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Johannes, C. B., Le, T. K., Zhou, X., Johnston, J. A., & Dworkin, R. H. (2010). The prevalence of chronic pain in United States adults: Results of an Internet-based survey. Journal of Pain, 11(11), 1230–1239.

    Article  PubMed  Google Scholar 

  4. Institute of Medicine. (2012). Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving pain in America: A blueprint for transforming prevention, care, education, and research. Washington, DC: National Academies Press.

  5. Mystakidou, K., Parpa, E., Tsilika, E., Pathiaki, M., Gennatas, K., Smyrniotis, V., et al. (2007). The relationship of subjective sleep quality, pain, and quality of life in advanced cancer patients. Sleep, 30(6), 737–742.

    PubMed Central  PubMed  Google Scholar 

  6. Ramstad, K., Jahnsen, R., Skjeldal, O. H., & Diseth, T. H. (2012). Parent-reported participation in children with cerebral palsy: The contribution of recurrent musculoskeletal pain and child mental health problems. Developmental Medicine and Child Neurology, 54(9), 829–835.

    Article  PubMed  Google Scholar 

  7. Schirbel, A., Reichert, A., Roll, S., Baumgart, D. C., Buning, C., Wittig, B., et al.. (2010). Impact of pain on health-related quality of life in patients with inflammatory bowel disease. World Journal of Gastroenterology, 16(25), 3168–3177.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Dworkin, R. H., Turk, D. C., Farrar, J. T., Haythornthwaite, J. A., Jensen, M. P., Katz, N. P., et al. (2005). Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain, 113(1–2), 9–19.

    Article  PubMed  Google Scholar 

  9. Edelen, M. O., & Saliba, D. (2010). Correspondence of verbal descriptor and numeric rating scales for pain intensity: An item response theory calibration. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65(7), 778–785.

    Article  Google Scholar 

  10. Askew, R. L., Kim, J., Chung, H., Cook, K. F., Johnson, K. L., & Amtmann, D. (2013). Development of a crosswalk for pain interference measured by the BPI and PROMIS pain interference short form. Quality of Life Research, 22(10), 2769–2776.

    Article  PubMed  Google Scholar 

  11. Cleeland, C. S., Gonin, R., Hatfield, A. K., Edmonson, J. H., Blum, R. H., Stewart, J. A., et al. (1994). Pain and its treatment in outpatients with metastatic cancer. New England Journal of Medicine, 330(9), 592–596.

    Article  CAS  PubMed  Google Scholar 

  12. Ware, J. E, Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473–483.

    Article  PubMed  Google Scholar 

  13. Liu, H., Cella, D., Gershon, R., Shen, J., Morales, L. S., Riley, W., et al. (2010). Representativeness of the patient-reported outcomes measurement information system internet panel. Journal of Clinical Epidemiology, 63(11), 1169–1178.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cook, K. F., Molton, I. R., & Jensen, M. P. (2011). Fatigue and aging with a disability. Archives of Physical Medicine and Rehabilitation, 92(7), 1126–1133.

    Article  PubMed  Google Scholar 

  15. Molton, I., Cook, K. F., Smith, A. E., Amtmann, D., Chen, W. H., & Jensen, M. P. (2014). Prevalence and impact of pain in adults aging with a physical disability: Comparison to a US general population sample. Clinical Journal of Pain, 30(4), 307–315.

    Article  PubMed  Google Scholar 

  16. Amtmann, D., Cook, K. F., Jensen, M. P., Chen, W. H., Choi, S., Revicki, D., et al. (2010). Development of a PROMIS item bank to measure pain interference. Pain, 150(1), 173–182.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores (Psychometric Monograph No. 17). Richmond, VA: Psychometric Society. Retrieved from http://www.psychometrika.org/journal/online/MN17.pdf.

  18. Cleeland, C. S., Nakamura, Y., Mendoza, T. R., Edwards, K. R., Douglas, J., & Serlin, R. C. (1996). Dimensions of the impact of cancer pain in a four country sample: New information from multidimensional scaling. Pain, 67(2–3), 267–273.

    Article  CAS  PubMed  Google Scholar 

  19. Mendoza, T. R., Chen, C., Brugger, A., Hubbard, R., Snabes, M., Palmer, S. N., et al. (2004). Lessons learned from a multiple-dose post-operative analgesic trial. Pain, 109(1–2), 103–109.

    Article  PubMed  Google Scholar 

  20. Shulman, M. A., Myles, P. S., Chan, M. T., McIlroy, D. R., Wallace, S., & Ponsford, J. (2015). Measurement of disability-free survival after surgery. Anesthesiology, 122(3), 524–536.

    Article  PubMed  Google Scholar 

  21. Stubbs, B., Eggermont, L., Patchay, S., & Schofield, P. (2014). Older adults with chronic musculoskeletal pain are at increased risk of recurrent falls and the brief pain inventory could help identify those most at risk. Geriatrics & Gerontology International. doi:10.1111/ggi.12357.

  22. Kroenke, K., Theobald, D., Wu, J., Tu, W., & Krebs, E. E. (2012). Comparative responsiveness of pain measures in cancer patients. Journal of Pain, 13(8), 764–772.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Cleeland, C. S. (2009). The brief pain inventory user guide. Retrieved 4/16/2015, fromhttp://www.mdanderson.org/education-and-research/departments-programs-and-labs/departments-and-divisions/symptom-research/symptom-assessment-tools/BPI_UserGuide.pdf

  24. Ware, J. E., Kosinski, M., & Keller, S. D. (1994). SF-36 physical and mental health summary scales: A users’ manual. Boston, MA: The Health Institute.

    Google Scholar 

  25. Ware, J. E, Jr. (2000). SF-36 health survey update. Spine, 25(24), 3130–3139.

    Article  PubMed  Google Scholar 

  26. Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey: Manual and interpretation guide. Boston, MA: The Health Institute, New England Medical Center.

    Google Scholar 

  27. Choi, S. W., Schalet, B., Cook, K. F., & Cella, D. (2014). Establishing a common metric for depressive symptoms: Linking the BDI-II, CES-D, and PHQ-9 to PROMIS depression. Psychological Assessment, 26(2), 513–527.

  28. Muthén, L. K., & Muthén, B. O. (2006). Mplus. Los Angeles: Muthén & Muthén.

    Google Scholar 

  29. Lance, C., Butts, M., & Michels, L. (2006). The sources of four commonly reported cutoff criteria: What did they really say? Organizational Research Methods, 9, 202–220.

    Article  Google Scholar 

  30. West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 209–231). New York, NY: Guilford Press.

    Google Scholar 

  31. Cook, K. F., Kallen, M. A., & Amtmann, D. (2009). Having a fit: Impact of number of items and distribution of data on traditional criteria for assessing IRT’s unidimensionality assumption. Quality of Life Research, 18(4), 447–460.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Browne, M. W., Cudeck, R., Bollen, K. A., & Long, K. S. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

    Google Scholar 

  33. Hu, L., & Bentler, P. M. (1998). Fit Indices in covariance structure modeling: Sensitivity to underparameterization model misspecification. Psychological Methods, 3, 424–453.

    Article  Google Scholar 

  34. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.

    Article  Google Scholar 

  35. McDonald, R. P. (1999). Test theory: A unified treatment. New York: Psychology Press.

    Google Scholar 

  36. Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ωh: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70, 123–133.

    Article  Google Scholar 

  37. Revelle, W. (2013). psych: Procedures for personality and psychological research (R package version 1.2.8) (computer software). Evanston, IL: Northwestern University. http://cran.r-project.org/web/packages/psych/index.html

  38. R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna: Austria R Foundation for Statistical Computing. http://www.r-project.org/

  39. Deng, N., Guyer, R., & Ware, J. E, Jr. (2015). Energy, fatigue, or both? A bifactor modeling approach to the conceptualization and measurement of vitality. Quality of Life Research, 24(1), 81–93.

    Article  PubMed  Google Scholar 

  40. Paap, M. C., Brouwer, D., Glas, C. A., Monninkhof, E. M., Forstreuter, B., Pieterse, M. E., et al. (2015). The St George’s Respiratory Questionnaire revisited: A psychometric evaluation. Quality of Life Research, 24(1), 67–79.

    Article  PubMed  Google Scholar 

  41. Reise, S. P., Scheines, R., Widaman, K. F., & Haviland, M. G. (2012). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73(1), 5–26.

    Article  Google Scholar 

  42. Revelle, W. (2015). psych: Procedures for personality and psychological research (version 1.5.1). Evanston, IL: Northwestern University.

  43. Wainer, H., & Thissen, D. (1996). How is reliability related to the quality of test scores? What is the effect of local dependence on reliability? Educational Measure, 15, 22–29.

    Article  Google Scholar 

  44. Chen, W. H., & Thissen, D. (1997). Local dependence indices for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289.

    Article  Google Scholar 

  45. Cai, L., Thissen, D., & du Toit, S. (2011). IRTPRO 2.1 for Windows. Lincolnwood, IL: Scientific Software International Inc.

  46. Dorans, N. J., & Holland, P. W. (2000). Population invariance and the equatability of tests: Basic theory and the linear case. Journal of Educational Measurement, 37(4), 281–306.

    Article  Google Scholar 

  47. Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and practices. New York: Springer.

    Book  Google Scholar 

  48. Lord, F. M. (1982). The standard error of equipercentile equating. Journal of Educational and Behavioral Statistics, 7(3), 165–174.

    Article  Google Scholar 

  49. Brennan, R. (2004). Linking with Equivalent Group or Single Group Design (LEGS) (version 2.0). Iowa City, IA: University of Iowa, Center for Advanced Studies in Measurement and Assessment (CASMA).

  50. Albano, T. (2011). Equate: Statistical methods for test score equating (R package version 1.1-4). http://cran.opensourceresources.org/web/packages/equate/equate.pdf

  51. Reinsch, C. H. (1967). Smoothing by spline functions. Numerische Mathematik, 10(3), 177–183.

    Article  Google Scholar 

  52. Cai, L., Thissen, D., & du Toit, S. H. C. (2011). IRTPRO for Windows user’s guide. Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  53. Fayers, P. M., Hjermstad, M. J., Klepstad, P., Loge, J. H., Caraceni, A., Hanks, G. W., et al.. (2011). The dimensionality of pain: Palliative care and chronic pain patients differ in their reports of pain intensity and pain interference. Pain, 152(7), 1608–1620.

    Article  PubMed  Google Scholar 

  54. Dorans, N. J. (2004). Equating, concordance, and expectation. Applied Psychological Measurement, 28(4), 227–246.

  55. Reise, S. P., Scheines, R., Widaman, K. F., & Haviland, M. G. (2013). Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and Psychological Measurement, 73(1), 5–26.

    Article  Google Scholar 

  56. Yost, K. J., Eton, D. T., Garcia, S. F., & Cella, D. (2011). Minimally important differences were estimated for six Patient-Reported Outcomes Measurement Information System-Cancer scales in advanced-stage cancer patients. Journal of Clinical Epidemiology, 64(5), 507–516.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Dorans, N. J. (2007). Linking scores from multiple health outcome instruments. Quality of Life Research, 16(Suppl 1), 85–94.

    Article  PubMed  Google Scholar 

  58. Thissen, D., Varni, J. W., Stucky, B. D., Liu, Y., Irwin, D. E., & Dewalt, D. A. (2011). Using the PedsQL 3.0 asthma module to obtain scores comparable with those of the PROMIS pediatric asthma impact scale (PAIS). Quality of Life Research, 20(9), 1497–1505.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was part of the PROsetta Stone® project, which was funded by the National Institutes of Health/National Cancer Institute grant RC4CA157236 (David Cella, PI). For more information on PROsetta Stone, see www.prosettastone.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karon F. Cook.

Appendices

Appendix 1

See Table 5.

Table 5 Items included in calibration

Appendix 2

See Table 6.

Table 6 Crosswalk between Short Form-36 Bodily Pain (SF36-BP) summed scores and Patient-Reported Outcome Measurement Information System Pain Interference (PROMIS-PI) T-score metric

Appendix 3

See Table 7.

Table 7 Crosswalk between Brief Pain Inventory Pain Interference (BPI-PI) summed scores and Patient-Reported Outcome Measurement Information System Pain Interference (PROMIS-PI) T-score metric

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, K.F., Schalet, B.D., Kallen, M.A. et al. Establishing a common metric for self-reported pain: linking BPI Pain Interference and SF-36 Bodily Pain Subscale scores to the PROMIS Pain Interference metric. Qual Life Res 24, 2305–2318 (2015). https://doi.org/10.1007/s11136-015-0987-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-015-0987-6

Keywords

Navigation