Skip to main content
Log in

An asymptotic approximation for TCP compound

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper, we derive an approximation for throughput of TCP Compound connections under random losses. Throughput expressions for TCP Compound under a deterministic loss model exist in the literature. These are obtained assuming that the window sizes are continuous, i.e., a fluid behavior is assumed. We validate this model theoretically. We show that under the deterministic loss model, the TCP window evolution for TCP Compound is asymptotically periodic and is independent of the initial window size. We then consider the case when packets are lost randomly and independently of each other. We discuss Markov chain models to analyze performance of TCP in this scenario. We use insights from the deterministic loss model to get an appropriate scaling for the window size process and show that these scaled processes, indexed by p, the packet error rate, converge to a limit Markov chain process as p goes to 0. We show the existence and uniqueness of the stationary distribution for this limit process. Using the stationary distribution for the limit process, we obtain approximations for throughput, under random losses, for TCP Compound when packet error rates are small. We compare our results with ns2 simulations which show a good match and a better approximation than the fluid model at low p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. \(\lfloor {x}\rfloor \) is the largest integer smaller than x.

References

  1. Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control. RFC 2581 (Proposed Standard) (1999)

  2. Altman, E., Avrachenkov, K., Barakat, C.: A stochastic model of TCP/IP with stationary random losses. SIGCOMM Comput. Commun. Rev. 30(4), 231–242 (2000)

    Article  Google Scholar 

  3. Asmussen, S.: Applied probability and queues. In: Devroye, L., Gyorfi, L., Lugosi, G. (eds.) Applications of Mathematics Stochastic Modelling and Applied Probability, vol. 51, 2nd edn. Springer, New York (2003)

    Google Scholar 

  4. Athreya, K., Lahiri, S.: Measure Theory and Probability Theory. Springer Texts in Statistics. Springer, New York (2006)

    Google Scholar 

  5. Balakrishnan, H., Padmanabhan, V.N., Seshan, S., Katz, R.H.: A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Trans. Netw. 5(6), 756–769 (1997)

    Article  Google Scholar 

  6. Blanc, A., Avrachenkov, K., Collange, D., Neglia, G.: Compound TCP with Random Losses. In: Proceedings of the 8th International IFIP-TC 6 Networking Conference. NETWORKING ’09, pp. 482–494. Springer, Heidelberg (2009)

  7. Borman, D., Scheffenegger, R., Jacobson, V.: TCP extensions for high performance. RFC 7323 (2014)

  8. Cardwell, N., Savage, S., Anderson, T.: Modeling TCP latency. In: IEEE Infocom, pp. 1724–1751 (2000)

  9. Chavan, S., Raina, G.: Performance of TCP with a Proportional Integral Enhanced (PIE) queue management policy. In: 2015 27th Chinese Control and Decision Conference (CCDC), pp. 1013–1018 (2015)

  10. Dumas, V., Guillemin, F., Robert, P.: A Markovian analysis of additive-increase multiplicative-decrease algorithms. Adv. Appl. Probab. 34(1), 85–111 (2002)

    Article  Google Scholar 

  11. Enachescu, M., Ganjali, Y., Goel, A., McKeown, N., Roughgarden, T.: Part III: routers with very small buffers. ACM SIGCOMM Comput. Commun. Rev. 35(3), 83–90 (2005)

    Article  Google Scholar 

  12. Floyd, S.: HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimental) (2003)

  13. Floyd, S., Henderson, T.: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 2582 (Experimental) (1999)

  14. Floyd, S., Henderson, T., Gurtov, A.: The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard) (2004)

  15. Gettys, J., Nichols, K.: Bufferbloat: dark buffers in the internet. Queue 9(11), 40 (2011)

    Article  Google Scholar 

  16. Ghosh, D., Jagannathan, K., Raina, G.: Right buffer sizing matters: stability, queuing delay and traffic burstiness in compound TCP. In: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton 2014), pp. 1132–1139 (2014)

  17. Gupta, A., Sharma, V.: A unified approach for analyzing persistent, non-persistent and ON–OFF TCP sessions in the internet. Perform. Eval. 63(2), 79–98 (2006)

    Article  Google Scholar 

  18. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42, 64–74 (2008)

    Article  Google Scholar 

  19. Huston, G.: Gigabit TCP. Internet Protoc. J. 2, 64–69 (2006)

    Google Scholar 

  20. Kelly, T.: Scalable TCP: improving performance in highspeed wide area networks. SIGCOMM Comput. Commun. Rev. 33(2), 83–91 (2003)

    Article  Google Scholar 

  21. Lakshman, T.V., Madhow, U.: The performance of TCP/IP for networks with high bandwidth-delay products and random loss. IEEE/ACM Trans. Netw. 5, 336–350 (1997)

    Article  Google Scholar 

  22. Manjunath, S., Raina, G.: Analyses of compound TCP with random early detection (RED) queue management. In: 2015 27th Chinese Control and Decision Conference (CCDC), pp. 5334–5339 (2015)

  23. Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Comput. Commun. Rev. 27, 67–82 (1997)

    Article  Google Scholar 

  24. Mills, K.L., Filliben, J.J., Cho, D.Y., Schwartz, E., Genin, D.: Study of Proposed Internet Congestion Control Mechanisms. DIANE, New York (2011)

    Google Scholar 

  25. Misra, V., Gong, W.B., Towsley, D.: Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. ACM SIGCOMM Computer Communication Review, vol. 30, pp. 151–160. ACM, New York (2000)

    Google Scholar 

  26. Nichols, K., Jacobson, V.: Controlling queue delay. Commun. ACM 55(7), 42–50 (2012)

    Article  Google Scholar 

  27. Padhye, J., Firoiu, V., Towsley, D.F., Kurose, J.F.: Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. 8, 133–145 (2000)

    Article  Google Scholar 

  28. Poojary, S., Sharma, V.: Theoretical analysis of high-speed multiple TCP connections through multiple routers. In: ICC. IEEE, Piscataway (2013)

  29. Raina, G., Towsley, D., Wischik, D.: Part II: control theory for buffer sizing. ACM SIGCOMM Comput. Commun. Rev. 35(3), 79–82 (2005)

    Article  Google Scholar 

  30. Shakkottai, S., Srikant, R.: How good are deterministic fluid models of internet congestion control? In: IEEE Infocom, vol. 2, pp. 497–505 (2002)

  31. Sharma, V., Purkayastha, P.: Stability and analysis of TCP connections with RED control and exogenous traffic. Queueing Syst. Theory Appl. 48, 193–235 (2004)

    Article  Google Scholar 

  32. Shorten, R., King, C., Wirth, F., Leith, D.: Modelling TCP congestion control dynamics in drop-tail environments. Automatica 43(3), 441–449 (2007)

    Article  Google Scholar 

  33. Shorten, R.N., Leith, D.J.: H-TCP: TCP for high-speed and long-distance networks. In: Proceedings PFLDnet, Argonne (2004)

  34. Talbot, D.: A Bandwidth Breakthrough. https://www.technologyreview.com/s/429722/a-bandwidth-breakthrough/. Accessed 14 Oct 2016

  35. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. In: IEEE Infocom (2006)

  36. Tweedie, R.: The existence of moments for stationary Markov chains. J. Appl. Probab. 6, 191–196 (1983)

    Article  Google Scholar 

  37. Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246–1259 (2006)

    Article  Google Scholar 

  38. Wischik, D., McKeown, N.: Part I: buffer sizes for core routers. ACM SIGCOMM Comput. Commun. Rev. 35(3), 75–78 (2005)

    Article  Google Scholar 

  39. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: IEEE Infocom (2004)

  40. Yang, P., Shao, J., Luo, W., Xu, L., Deogun, J., Lu, Y.: TCP congestion avoidance algorithm identification. IEEE/ACM Trans. Netw. 22(4), 1311–1324 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudheer Poojary.

Additional information

Preliminary version of this paper was presented in the National Conference on Communications, India, 2016.

Appendix

Appendix

Proposition 8

Suppose \(\{X(p)\}\) is a family of positive random variables indexed by \(p \in I\), for some \(I \subset {\mathbb {R}}\) such that

$$\begin{aligned} {\mathbb {P}}(X(p) \ge y) \le c_1 \exp (-c_2 y), \end{aligned}$$

for all y, for some \(c_1 > 0\) and \(c_2 > 0\). Then there exists \(t>0\) such that

$$\begin{aligned} \sup _{u \in (-t,t)} \sup _{p \in I} {\mathbb {E}}\left[ \mathrm{e}^{uX(p)}\right] < \infty . \end{aligned}$$

Proof

For any \(u > 0\) and \(p > 0\),

$$\begin{aligned} \begin{aligned} {\mathbb {E}}[\mathrm{e}^{uX(p)}]&= \int _{0}^{\infty } {\mathbb {P}}\left( \mathrm{e}^{uX(p)} \ge y\right) \mathrm{d}y \le 1 + \int _{1}^{\infty } {\mathbb {P}}(uX(p) \ge \log (y)) \mathrm{d}y \\&\le 1 + \int _{1}^{\infty } c_1 \exp \left( - \frac{c_2}{u} \log (y)\right) \mathrm{d}y = 1 + \int _{1}^{\infty } \frac{c_1}{y^{\frac{c_2}{u}}} \mathrm{d}y. \end{aligned} \end{aligned}$$

For \(u < c_2\), \(\int _{1}^{\infty } \frac{c_1}{y^{\frac{c_2}{u}}} < \infty \). Therefore \(\sup _{u \in [0,c_2 - \epsilon ]} \sup _{p \in I} {\mathbb {E}}[\mathrm{e}^{uX(p)}] < \infty \), where \(\epsilon \) is a positive constant less than \(c_2\). For \(u<0\), \(uX(p) \le 0\) which implies \(\sup _{p \in I} {\mathbb {E}}[\mathrm{e}^{uX(p)}] \le 1\), for \(u < 0\). \(\square \)

Proposition 9

Let \(\{X_p(x), x \in {\mathbb {R}}^+\}\), be a process, for \(0< p < 1\), which converges to a limiting process X(x) uniformly in the sense that

$$\begin{aligned} \lim _{p \rightarrow 0} \sup _{x, y \le M} \Bigl | {\mathbb {P}}(X_p(x) \le y) - {\mathbb {P}}(X(x) \le y) \Bigr | = 0, \end{aligned}$$
(34)

for any finite M, and for each x, the limiting distribution, \({\mathbb {P}}(X(x) \le y) \) is continuous. Then,

$$\begin{aligned} \lim _{p \rightarrow 0} \sup _{x \le M} \Bigl | {\mathbb {E}}f(X_p(x)) - {\mathbb {E}}f(X(x)) \Bigr | = 0, \end{aligned}$$

for any \(f:\mathbb {R^+}\rightarrow {\mathbb {R}}\) continuous with compact support.

Proof

Consider a continuous function f with compact support [0, K]. Such a function is uniformly continuous. Therefore, given any \(\epsilon \), there exist m points \(u_0 = 0< u_1< \cdots < u_m = K\), such that

$$\begin{aligned} \sup _{u_i< y< u_{i+1}} |f(y) - f(u_i)| < \epsilon , \end{aligned}$$
(35)

for all \(i=1,2,\cdots , m\). We have

$$\begin{aligned} E[f(X_p(x)] = \int \limits _{0}^{K} f(u) {\mathbb {P}}(X_p(x) \in du). \end{aligned}$$

From (35),

$$\begin{aligned} \left| E[f(X_p(x)] - \sum \limits _{i=1}^{m-1} f(u_i) {\mathbb {P}}(X_p(x) \in (u_i,u_{i+1}]) \right| \le \epsilon . \end{aligned}$$

Similarly,

$$\begin{aligned} \begin{aligned} \left| E[f(X(x)] - \sum \limits _{i=1}^{m-1} f(u_i) {\mathbb {P}}(X(x) \in (u_i,u_{i+1}])\right| \le \epsilon . \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} \bigl |{\mathbb {E}}f(X_p(x) - {\mathbb {E}}f(X(x)) \bigr |&\le \sum \limits _{i=1}^{m} f(u_i) \bigl | {\mathbb {P}}(X_p(x) \in (u_i,u_{i+1}]) \\&\quad - {\mathbb {P}}(X(x) \in (u_i,u_{i+1}])\bigr | + 2 \epsilon \\&\le \sum \limits _{i=1}^{m} \parallel f \parallel _{\infty } \Bigl |{\mathbb {P}}(X_p(x) \in (u_i,u_{i+1}]) \\&\quad - {\mathbb {P}}(X(x) \in (u_i,u_{i+1}])\Bigl | + 2 \epsilon , \end{aligned} \end{aligned}$$

where \(\parallel f \parallel _{\infty } = \sup \{f(x): x \in [0,K] \}\). Since f is continuous over a compact support, it is bounded and hence \( \parallel f \parallel _{\infty } < \infty \). Therefore,

$$\begin{aligned} \begin{aligned} \lim _{p \rightarrow 0}&\sup _x \bigl |{\mathbb {E}}f(X_p(x) - {\mathbb {E}}f(X(x)) \bigr | \\&\le \lim _{p \rightarrow 0} \parallel f \parallel _{\infty } \sum \limits _{i=1}^{m} \sup _x \bigl | {\mathbb {P}}(X_p(x) \in (u_i,u_{i+1}]) - {\mathbb {P}}(X(x) \in (u_i,u_{i+1}]) \bigr | + 2 \epsilon , \\&= 2 \epsilon . \end{aligned} \end{aligned}$$

The second relation follows from the hypothesis (34). Since \(\epsilon \) is arbitrary, we get the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poojary, S., Sharma, V. An asymptotic approximation for TCP compound. Queueing Syst 85, 211–247 (2017). https://doi.org/10.1007/s11134-016-9509-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-016-9509-7

Keywords

Mathematics Subject Classification

Navigation