Skip to main content
Log in

The Israeli queue with retrials

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

The so-called “Israeli queue” (Boxma et al. in Stoch Model 24(4):604–625, 2008; Perel and Yechiali in Probab Eng Inf Sci, 2013; Perel and Yechiali in Stoch Model 29(3):353–379, 2013) is a multi-queue polling-type system with a single server. Service is given in batches, where the batch sizes are unlimited and the service time of a batch does not depend on its size. After completing service, the next queue to be visited by the server is the one with the most senior customer. In this paper, we study the Israeli queue with retrials, where the system is comprised of a “main” queue and an orbit queue. The main queue consists of at most \(M\) groups, where a new arrival enters the main queue either by joining one of the existing groups, or by creating a new group. If an arrival cannot join one of the groups in the main queue, he goes to a retrial (orbit) queue. The orbit queue dispatches orbiting customers back to the main queue at a constant rate. We analyze the system via both probability generating functions and matrix geometric methods, and calculate analytically various performance measures and present numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ammar, M.H., Wong, J.W.: On the optimality o cyclic transmission in teletext systems. IEEE Trans. Commun. COM 35(1), 68–73 (1987)

    Article  Google Scholar 

  2. Artalejo, J.R.: Accessible bibliography on retrial queues. Math. Comput. Model. 30, 223–233 (1999)

    Google Scholar 

  3. Artalejo, J.R., Gómez-Corral, A.: On a single server queue with negative arrivals and request repeated. J. Appl. Probab. 36, 907–918 (1999)

    Article  Google Scholar 

  4. Artalejo, J.R., Gómez-Corral, A., Neuts, M.F.: Analysis of multiserver queues with constant retrial rate. Eur. J. Oper. Res. 135(3), 569–581 (2001)

    Article  Google Scholar 

  5. Artalejo, J.R., Gómez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Berlin (2008)

    Book  Google Scholar 

  6. Avrachenkov, K., Nain, P., Yechiali, U.: A retrial system with two input streams and two orbit queues. Queueing Syst. (to appear) (2013)

  7. Avrachenkov, K., Yechiali, U.: Retrial networks and their application to the internet data traffic. Probab. Eng. Inf. Sci. 22(4), 519–536 (2008)

    Article  Google Scholar 

  8. Avrachenkov, K., Yechiali, U.: On tandem blocking queues with a common retrial queue. Comput. Oper. Res. 37(7), 1174–1180 (2009)

    Article  Google Scholar 

  9. Boxma, O.J., van der Wal, Y., Yechiali, U.: Polling with gated batch service. In: Proceedings of the Sixth International Conference on ”Analysis of Manufacturing Systems”, Lunteren, The Netherlands, pp. 155–159 (2007)

  10. Boxma, O.J., van der Wal, Y., Yechiali, U.: Polling with batch service. Stoch. Model. 24(4), 604–625 (2008)

    Article  Google Scholar 

  11. Dykeman, H.D., Ammar, M.H., Wong, J.W.: Scheduling algorithms for videotex systems under broadcast delivery. In: Proceedings of the International Conference on Communications (ICC’86), pp. 1847–1851 (1986)

  12. Falin, G.I.: A survey of retrial queues. Queueing Syst. 7, 127–167 (1990)

    Article  Google Scholar 

  13. Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)

    Book  Google Scholar 

  14. Falin, G.I.: A single-server batch arrival queue with returning customers. Eur. J. Oper. Res. 201, 786–790 (2010)

    Article  Google Scholar 

  15. He, Q.-M., Chavoushi, A.A.: Analysis of queueing systems with customer interjections. Queueing Syst. 73, 79–104 (2013)

    Article  Google Scholar 

  16. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling. In: ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia (1999)

  17. Liu, Z., Nain, P.: Optimal scheduling in some multiqueue single-server systems. IEEE Trans. Autom. Control 37(2), 247–252 (1992)

    Article  Google Scholar 

  18. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach. The Johns Hopkins University Press, Baltimore (1981)

    Google Scholar 

  19. Perel, N., Yechiali, U.: The Israeli queue with infinite number of groups. Probab. Eng. Inf. Sci. (to appear) (2013)

  20. Perel, N., Yechiali, U.: The Israeli queue with priorities. Stoch. Model. 29(3), 353–379 (2013)

    Article  Google Scholar 

  21. van Oyen, M.P., Teneketzis, D.: Optimal batch service of a polling system under partial informtion. Methods Model. OR 44(3), 401–419 (1996)

    Google Scholar 

  22. van der Wal, J., Yechiali, U.: Dynamic visit-order rules for batch-service polling. Probab. Eng. Inf. Sci. 17(3), 351–367 (2003)

    Google Scholar 

  23. Yang, T., Templeton, J.G.C.: A survey on retrial queues. Queueing Syst. 2, 201–233 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Yechiali.

Appendix

Appendix

Proposition 8.1

For a given \(1\le M <\infty \), the polynomials \(q_{m}(z)\) are of the following form:

$$\begin{aligned}&q_m(z)=z^{m-1}\prod \limits _{k=0}^{m-1}{(\lambda (1-p)^k+\gamma )}+(1-z)h_m^{(M)}(z), \quad m=0,1,\ldots ,M,\\&q_{M+1}(z)=(1-z)h_{M+1}^{(M)}(z), \end{aligned}$$

where

$$\begin{aligned} h_0^{(M)}(z)&= h_1^{(M)}(z)=0,\\ h_m^{(M)}(z)&= h_{m-1}^{(M)}(z)(\lambda (1-p)^{m-1}+\mu +\gamma )z-h_{m-1}^{(M)}(z)\mu z(\lambda (1-p)^{m-2}z+\gamma )\\&-\,\mu \gamma z^{m-2}\prod \limits _{k=0}^{m-3}{(\lambda (1-p)^k+\gamma )}, \quad m=2,3,\ldots ,M, \end{aligned}$$

and

$$\begin{aligned} h_{M+1}^{(M)}(z)&= h_{M}^{(M)}(z)(\lambda (1-p)^M(1-z)+\mu )z-h_{M-1}^{(M)}(z)\mu z(\lambda (1-p)^{M-1}z+\gamma )\\&+\,z^M\lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )}-\mu \gamma z^{M-1}\prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}. \end{aligned}$$

Proof

The proof is conducted by induction over \(m\). First, \(q_0(z)=1\) and \(q_1(z)=\lambda +\gamma \). Therefore, \(h_0^{(M)}(z)=h_1^{(M)}(z)=0\). Next,

$$\begin{aligned} q_2(z)&= \alpha _{1}(z)q_{1}(z)-\mu z(\lambda z+\gamma )q_{0}(z)\\&= (\lambda (1-p)+\gamma )z(\lambda +\gamma )-\mu (\lambda z+\gamma )\\&= z\prod \limits _{k=0}^{1}{(\lambda (1-p)^k+\gamma )}-\mu \gamma (1-z), \end{aligned}$$

so that \(h_{2}^{(M)}(z)=-\mu \gamma \). Assume now that the proposition holds for any \(m=2,3,\ldots ,M-1\). For \(m+1\), we have

$$\begin{aligned} q_{m+1}(z)&= \alpha _m(z)q_m(z)-\mu z(\lambda (1-p)^{m-1}z+\gamma )q_{m-1}(z) \nonumber \\&= (\lambda (1-p)^m+\mu +\gamma )z\left( z^{m-1}\prod \limits _{k=0}^{m-1}{(\lambda (1-p)^k+\gamma )}+(1-z)h_m^{(M)}(z)\right) \nonumber \\&\!-\,\mu z(\lambda (1-p)^{m-1}z\!+\!\gamma )\left( z^{m-2}\prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k\!+\!\gamma )}\!+\!(1-z)h_{m-1}^{(M)}(z)\right) \nonumber \\&= z^m\prod \limits _{k=0}^{m}{(\lambda (1-p)^k+\gamma )}+\mu z^m\prod \limits _{k=0}^{m-1}{(\lambda (1-p)^k+\gamma )}\nonumber \\&+\,h_m^{(M)}(z)(\lambda (1-p)^m+\mu +\gamma )z(1-z) \nonumber \\&\!-\,\mu z^m\lambda (1-p)^{m-1}\prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k\!+\!\gamma )}\!-\!\mu z^{m-1}\gamma \prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )} \nonumber \\&-\,h_{m-1}^{(M)}(z)\mu z(\lambda (1-p)^{m-1}z+\gamma )(1-z). \end{aligned}$$
(8.1)

Note that

$$\begin{aligned}&\mu z^m\prod \limits _{k=0}^{m-1}{(\lambda (1-p)^k+\gamma )}-\mu z^m\lambda (1-p)^{m-1}\prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )}\nonumber \\&\quad -\,\mu z^{m-1}\gamma \prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )} \nonumber \\&\quad =\mu z^m\lambda (1-p)^{m-1}\prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )}+\mu z^m\gamma \prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )} \nonumber \\&\qquad -\,\mu z^m\lambda (1-p)^{m-1}\prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )}-\mu z^{m-1}\gamma \prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )} \nonumber \\&\quad =-\mu \gamma z^{m-1}\prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )}(1-z). \end{aligned}$$
(8.2)

Substituting (8.2) in (8.1) results in

$$\begin{aligned} q_{m+1}(z)&= z^m\prod \limits _{k=0}^{m}{(\lambda (1-p)^k+\gamma )}+(1-z) \Bigg (h_m^{(M)}(z)(\lambda (1-p)^m+\mu +\gamma )z \nonumber \\&-\,h_{m-1}^{(M)}(z)\mu z(\lambda (1-p)^{m-1}z+\gamma ) -\mu \gamma z^{m-1}\prod \limits _{k=0}^{m-2}{(\lambda (1-p)^k+\gamma )}\Bigg ).\nonumber \\ \end{aligned}$$
(8.3)

Now, for \(m=M+1\), we get

$$\begin{aligned} q_{M+1}(z)&= \alpha _M(z)q_M(z)-\mu z(\lambda (1-p)^{M-1}z+\gamma )q_{M-1}(z) \nonumber \\&= (\lambda (1-p)^M(1-z)+\mu )z\left( z^{M-1}\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )}+(1-z)h_M^{(M)}(z)\right) \nonumber \\&-\,\mu z(\lambda (1-p)^{M-1}z+\gamma )\left( z^{M-2}\prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}+(1-z)h_{M-1}^{(M)}(z)\right) \nonumber \\&= z^M\lambda (1-p)^M(1-z)\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )}+\mu z^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )} \nonumber \\&+\,h_M^{(M)}(z)(\lambda (1-p)^M(1-z)+\mu )z(1-z)\nonumber \\&-\,z^M\lambda (1-p)^{M-1}\prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )} \nonumber \\&-\,\mu z^{M-1}\gamma \prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}-h_{M-1}^{(M)}(z)\mu z(\lambda (1-p)^{M-1}z\!+\!\gamma )(1-z),\qquad \qquad \end{aligned}$$
(8.4)

which after some algebra leads to

$$\begin{aligned} q_{M+1}(z)&= (1-z)\Bigg (h_M^{(M)}(z)(\lambda (1-p)^M(1-z)+\mu )z\nonumber \\&-\,h_{M-1}^{(M)}(z)\mu z(\lambda (1-p)^{M-1}z+\gamma )\nonumber \\&+\,z^M\lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )}\nonumber \\&-\,\mu \gamma z^{M-1}\prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}\Bigg ). \end{aligned}$$
(8.5)

This completes the proof.

Proposition 8.2

For all \(1\le M < \infty \),

$$\begin{aligned} h_{M+1}^{(M)}(1)=\lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )} -\gamma \mu ^M\sum \limits _{m=0}^{M-1}{\frac{1}{\mu ^m}\prod \limits _{k=0}^{m-1} {(\lambda (1-p)^k+\gamma )}}. \end{aligned}$$
(8.6)

Proof

By induction over \(M\). First, assume \(M=1\). Recall from Proposition 8.1 that for all \(1\le M <\infty \), \(h_0^{(M)}(z)=h_1^{(M)}(z)=0\). Then, from Proposition 8.1, we get

$$\begin{aligned} h_2^{(1)}(1)=\lambda (1-p)(\lambda +\gamma )-\mu \gamma , \end{aligned}$$

which coincides with Eq. (8.6) when \(M=1\).

Assume now that the proposition holds for \(M-1\). Using Proposition 8.1 for \(M\), we get

$$\begin{aligned} h_{M+1}^{(M)}(1)&= h_{M}^{(M)}(1)\mu -h_{M-1}^{(M)}(1)\mu (\lambda (1-p)^{M-1}+\gamma ) \nonumber \\&+\,\lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k\!+\!\gamma )}\!-\! \mu \gamma \prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}.\qquad \qquad \end{aligned}$$
(8.7)

In addition, we use the following two relations

(\(a\)):

\(h_{M-1}^{(M)}(z)=h_{M-1}^{(M-1)}(z)\),

(\(b\)):

\(h_{M}^{(M-1)}(1)=h_{M}^{(M)}(1)-h_{M-1}^{(M-1)}(1)(\lambda (1-p)^{M-1}+\gamma ) + \lambda (1-p)^{M-1}\prod _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}\),

\(\square \)

so that Eq. (8.7) translates to

$$\begin{aligned} h_{M+1}^{(M)}(1)&= \mu \left( h_{M}^{(M-1)}(1)+h_{M-1}^{(M)}(1)(\lambda (1-p)^{M-1}+\gamma )-\, \lambda (1-p)^{M-1}\prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}\right) \nonumber \\&-h_{M-1}^{(M)}(1)\mu (\lambda (1-p)^{M-1}+\gamma )+\lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )} \nonumber \\&-\,\mu \gamma \prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}. \end{aligned}$$
(8.8)

Using the validity for \(M-1\) yields

$$\begin{aligned} h_{M+1}^{(M)}(1)&= \mu \Bigg (\lambda (1-p)^{M-1}\prod \limits _{k=0}^{M-2} {(\lambda (1-p)^k+\gamma )} -\gamma \mu ^{M-1}\sum \limits _{m=0}^{M-2}{\frac{1}{\mu ^m}\prod \limits _{k=0}^{m-1}{(\lambda (1-p)^k+\gamma )}} \nonumber \\&-\, \lambda (1-p)^{M-1}\prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )}\Bigg )+\lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )} \nonumber \\&-\,\mu \gamma \prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )} \nonumber \\&= \lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )} -\gamma \mu ^M\sum \limits _{m=0}^{M-2}{\frac{1}{\mu ^m}\prod \limits _{k=0}^{m-1}{(\lambda (1-p)^k+\gamma )}} \nonumber \\&-\,\mu \gamma \prod \limits _{k=0}^{M-2}{(\lambda (1-p)^k+\gamma )} \nonumber \\&= \lambda (1-p)^M\prod \limits _{k=0}^{M-1}{(\lambda (1-p)^k+\gamma )}- \gamma \mu ^M\sum \limits _{m=0}^{M-1}{\frac{1}{\mu ^m}\prod \limits _{k=0}^{m-1} {(\lambda (1-p)^k+\gamma )}}.\qquad \end{aligned}$$
(8.9)

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perel, N., Yechiali, U. The Israeli queue with retrials. Queueing Syst 78, 31–56 (2014). https://doi.org/10.1007/s11134-013-9389-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9389-z

Keywords

Mathematics Subject Classification

Navigation