Skip to main content
Log in

Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The aim of the work was to study the influence of particle size in the composition, physicochemical, techno-functional and physio-functional properties of two flours obtained from persimmon (Diospyros kaki Trumb. cvs. ‘Rojo Brillante’ (RBF) and ‘Triump’ (THF) coproducts. The cultivar (RBF and THF) and particle size significantly affected all parameters under study, although depending on the evaluated property, only one of these effects predominated. Carbohydrates (38.07–46.98 g/100 g) and total dietary fiber (32.07–43.57 g/100 g) were the main components in both flours (RBF and THF). Furthermore, insoluble dietary fiber represented more than 68% of total dietary fiber content. All color properties studied were influenced by cultivar and particle size. For both cultivars, the lower particle size, the higher lightness and hue values. RBF flours showed high values for emulsifying activity (69.33–74.00 mL/mL), while THF presented high values for water holding capacity (WHC: 9.47–12.19 g water/g sample). The bile holding capacity (BHC) and fat/oil binding values were, in general, higher in RBF (19.61–12.19 g bile/g sample and 11.98–9.07, respectively) than THF (16.12–12.40 g bile/g sample and 9.78–7.96, respectively). The effect of particle size was really evident in both WHC and BHC. Due to their dietary fiber content, techno-functional and physio-functional properties, persimmon flours seem to have a good profile to be used as potential functional ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BHC:

Bile holding capacity

EA:

Emulsifying activity

ES:

Emulsion stability

FOB:

Fat/oil binding

IDF:

Insoluble dietary fiber

OHC:

Oil holding capacity

RBF:

‘Rojo Brillante’ flour

SDF:

Soluble dietary fiber

SWC:

Swelling capacity

TDF:

Total dietary fiber

THF:

‘Triumph’ flour

WHC:

Water holding capacity

References

  1. Luo Z, Wang R (2008) Persimmon in China: domestication and traditional utilizations of genetic resources. Adv Hortic Sci 22:239–243. doi:10.1400/100648

    Google Scholar 

  2. FAOSTAT (2016) Item: persimmons. area: world; from 1993 to 2013 year. http://faostat3.fao.org/browse/Q/QC/E. [Accessed 12 April 2016]

  3. Taira S (1996) Astringency in persimmon. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis, fruit analysis. Springer-Verlag, Berlin

    Google Scholar 

  4. González E, Vegara S, Martí N et al (2015) Physicochemical characterization of pure persimmon juice: nutritional quality and food acceptability. J Food Sci 80:532–539. doi:10.1111/1750-3841.12772

    Article  Google Scholar 

  5. Martínez-Calvo J, Naval M, Zuriaga E et al (2013) Morphological characterization of the IVIA persimmon (Diospyros kaki Thunb.) germplasm collection by multivariate analysis. Genet Resour Crop Evol 60:233–241. doi:10.1007/s10722-012-9828-4

    Article  Google Scholar 

  6. Martínez-Las Heras R, Pinazo A, Heredia A et al (2017) Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chem 214:478–485. doi:10.1016/j.foodchem.2016.07.104

    Article  Google Scholar 

  7. Lee SO, Chung SK, Lee IS (2006) The antidiabetic effect of dietary persimmon (Diospyros kaki L. cv. Sangjudungsi) peel in streptozotocin-induced diabetic rats. J Food Sci 71:S293–S298. doi:10.1111/j.1365-2621.2006.tb15656.x

  8. Ahmed J, Taher A, Mulla MZ et al (2016) Effect of sieve particle size on functional, thermal, rheological and pasting properties of Indian and Turkish lentil flour. J Food Eng 186:34–41. doi:10.1016/j.jfoodeng.2016.04.008

    Article  Google Scholar 

  9. AOAC (2007) Official methods of analysis of AOAC International, 18th edn. Association of Official Analytical Chemists, Washington

  10. Robertson JA, Monredon FD, Dysseler P et al (2000) Hydratation properties of dietary fibre and resistant starch: a European collaborative study. LWT-Food Sci Technol 33:72–79. doi:10.1006/fstl.1999.0595

    Article  CAS  Google Scholar 

  11. Chau CF, Huang YL (2003) Comparison of the chemical composition and physicochemical properties of different fibres prepared from peel of Citrus sinensis L. cv. Liucheng. J Agric Food Chem 51:2615–2618. doi:10.1021/jf025919b

  12. Gómez-Ordoñez E, Jiménez-Escrig A, Ruperez P (2010) Dietary fibre and physico-chemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43:2289–2294. doi:10.1021/jf025919b

  13. Eastwood MA, Kirkpatrick JR, Mitchell WD et al (1973) Effects of dietary supplements of wheat bran and cellulose on faeces and bowel function. Br Med J 4:392–394. doi:10.1136/bmj.4.5889.392

  14. López-Marcos MC, Bailina C, Viuda-Martos M et al (2015) Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food Bioprocess Tech 8:2400–2408. doi:10.1007/s11947-015-1591-z

  15. Selani MM, Bianchini A, Ratnayake WS et al (2016) Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Foods Hum Nutr 71:137–144. doi:10.1007/s11130-016-0531-z

    Article  CAS  Google Scholar 

  16. Park YS, Jung ST, Kang SG et al (2006) Drying of persimmons (Diospyros kaki L.) and the following changes in the studied bioactive compounds and the total radical scavenging activities. LWT-Food Sci Technol 39:748–755. doi:10.1016/j.lwt.2005.05.014

    Article  CAS  Google Scholar 

  17. Jaime L, Mollá E, Fernández A et al (2002) Structural carbohydrates differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. J Agric Food Chem 50:122–128. doi:10.1021/jf010797t

    Article  CAS  Google Scholar 

  18. Bchir B, Rabetafika HN, Paquot M et al (2014) Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioprocess Tech 7:1114–1127. doi:10.1007/s11947-013-1148-y

  19. Akyildiz A, Aksay S, Benli H et al (2004) Determination of changes in some characteristics of persimmon during dehydration at different temperatures. J Food Eng 65:95–99. doi:10.1016/j.jfoodeng.2004.01.001

    Article  Google Scholar 

  20. Ahmed J, Thomas L, Al-Attar H (2015) Oscillatory rheology and creep behavior of barley β-D-glucan concentrate dough: effect of particle size, temperature, and water content. J Food Sci 80:73–83. doi:10.1111/1750-3841.12712

    Article  Google Scholar 

  21. Aguilar M, Blanca V (1995). Iluminación y color. Servicio de Publicaciones Universidad Politécnica de Valencia SPUPV-95.830. ISBN 84-7721-354-2  

  22. Akter MS, Eun JB (2009) Characterization of insoluble fiber prepared from the peel of ripe soft persimmon Dyospyros kaki L. cv Daebong. Food Sci Biotechnol 18:1545–1547

  23. López-Vargas JH, Fernández-López J, Pérez-Álvarez JA et al (2013) Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) coproducts. Food Res Int 51:756–763. doi:10.1016/j.foodres.2013.01.055

    Article  Google Scholar 

  24. García-Magaña ML, García HS, Bello-Pérez LA et al (2013) Functional properties and dietary fiber characterization of mango processing by-products Mangifera indica L., cv Ataulfo and Tommy Atkins. Plant Foods Hum Nutr 68:254–258. doi:10.1007/s11130-013-0364-y

    Article  Google Scholar 

  25. Aguilera Y, Benítez V, Mollá E et al (2011) Influence of dehydration process in Castellano chickpea: changes in bioactive carbohydrates and functional properties. Plant Foods Hum Nutr 66:391–400. doi:10.1007/s11130-011-0259-8

    Article  CAS  Google Scholar 

  26. Evans M, Ratcliffe I, Williams PA (2013) Emulsion stabilization using polysaccharide protein complexes. Curr Opin Colloid Interface Sci 18:272–282. doi:10.1016/j.cocis.2013.04.004

    Article  CAS  Google Scholar 

  27. Viuda-Martos M, Ruiz-Navajas Y, Martin-Sánchez A et al (2012) Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. J Food Eng 110:220–224. doi:10.1016/j.jfoodeng.2011.05.029

    Article  CAS  Google Scholar 

  28. Houten SM, Watanabe M, Auwerx J (2006) Endocrine functions of bile acids. EMBO J 25:1419–1425. doi:10.1038/sj.emboj.7601049

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Viuda-Martos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas-González, R., Viuda-Martos, M., Pérez-Álvarez, J.Á. et al. Evaluation of Particle Size Influence on Proximate Composition, Physicochemical, Techno-Functional and Physio-Functional Properties of Flours Obtained from Persimmon (Diospyros kaki Trumb.) Coproducts. Plant Foods Hum Nutr 72, 67–73 (2017). https://doi.org/10.1007/s11130-016-0592-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-016-0592-z

Keywords

Navigation