Skip to main content
Log in

Resveratrol Biosynthesis: Plant Metabolic Engineering for Nutritional Improvement of Food

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

The plant polyphenol trans-resveratrol (3, 5, 4′-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM (1995) The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clin Chim Acta 235:207–219

    Article  CAS  Google Scholar 

  2. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Metha RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  Google Scholar 

  3. Fremont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  CAS  Google Scholar 

  4. Shan C, Yang S, He H, Shao S, Zhang P (1990) Influences of 3, 4, 5′-trihydroxystilbene-3-β-mono-D-glucoside on rabbits platelet aggregation and thromboxane B2 production in vitro. Acta Pharmacol Sin 11:527–530

    CAS  Google Scholar 

  5. Gehm BD (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 94:14138–14143

    Article  CAS  Google Scholar 

  6. Stivala LA, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, Forti L, Pagnoni UM, Albini A, Prosperi E, Vannini V (2001) Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 276:22586–22594

    Article  CAS  Google Scholar 

  7. Frankel EN, Waterhouse AL, Kinsella JE (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 24:1103–1104

    Article  Google Scholar 

  8. Kinsella JE, Frankel E, German B, Kanner J (1993) Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol 4:85–89

    Article  Google Scholar 

  9. Burkardt PK, Beyer P, Wunn J, Kloti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phythoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Article  Google Scholar 

  10. DellaPenna D (2001) Plant metabolic engineering. Plant Physiol 125:160–163

    Article  CAS  Google Scholar 

  11. Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106

    Article  CAS  Google Scholar 

  12. Martin C, Butelli E, Petroni K, Tonelli C (2012) How can research on plants contribute to promoting human health? Plant Cell 23:1685–1699

    Google Scholar 

  13. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  CAS  Google Scholar 

  14. Bais AJ, Murphy PJ, Dry IB (2000) The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Aust J Plant Physiol 27:425–433

    Article  CAS  Google Scholar 

  15. Donnez D, Jeandet P, Clément C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713

    Article  CAS  Google Scholar 

  16. Jandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731–2741

    Article  Google Scholar 

  17. Soleas GJ, Diamandis EP, Goldberg DM (2001) The world of resveratrol. Adv Exp Med Biol 492:159–182

    Article  CAS  Google Scholar 

  18. Jeandet P, Bessis R, Maume BF, Meunier P, Peyron D, Trollat P (1995) Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem 43:316–319

    Article  CAS  Google Scholar 

  19. Stervbo U, Vang O, Bonnesen C (2007) A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem 101:449–457

    Article  CAS  Google Scholar 

  20. Szajdek A, Borowska EJ (2008) Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum Nutr 63:147–156

    Article  CAS  Google Scholar 

  21. Manach C, Scalbert A, Morand C, Rémésy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  22. Counet C, Callemien D, Collin S (2006) Chocolate and cocoa: New sources of trans-resveratrol and trans-piceid. Food Chem 98:649–657

    Article  CAS  Google Scholar 

  23. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: Improving human health and healthy aging, and promoting quality life- A review. Plant Foods Hum Nutr 65:299–308

    Article  Google Scholar 

  24. Castrejón ADR, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S (2008) Phenolic profile and antioxidant activity of high bush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem 109:564–572

    Article  Google Scholar 

  25. Vitrac X, Moni JP, Vercauteren J, Deffieux G, Mérillon JM (2002) Direct liquid chromatography analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. Anal Chim Acta 458:103–110

    Article  CAS  Google Scholar 

  26. Deytieux C, Geny L, Lapaillerie D, Claverol S, Bonneu M, Donèche B (2007) Proteome analysis of grape skins during ripening. J Exp Bot 58:1851–1862

    Google Scholar 

  27. Iriti M, Faoro F (2009) Bioactivity of grape chemicals for human health. Nat Prod Commun 4:611–634

    CAS  Google Scholar 

  28. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  Google Scholar 

  29. Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pe EM, Benvenuto E, Delledonne M, Pezzotti M (2010) Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol 154:1439–1459

    Article  CAS  Google Scholar 

  30. Frei B (2004) Efficacy of dietary antioxidants to prevent oxidative damage and inhibit chronic disease. J Nutr 134:3196–3198

    Google Scholar 

  31. Kundu JK, Surh YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett 269:243–261

    Article  CAS  Google Scholar 

  32. Kundu JK, Shin YK, Kim SH, Surh YJ (2006) Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 27:1465–1474

    Article  CAS  Google Scholar 

  33. Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, Jang M, Pezzuto JM, Dannenberg AJ (1998) Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 273:21875–21882

    Article  CAS  Google Scholar 

  34. Carluccio MA, Ancora MA, Massaro M, Carluccio M, Scoditti E, Distante A, Storelli C, De Caterina R (2007) Homocysteine induces VCAM-1 gene expression through NF-kappaB and NAD(P)H oxidase activation: Protective role of Mediterranean diet polyphenolic antioxidants. Am J Physiol Heart Circ Physiol 293:2344–2354

    Article  Google Scholar 

  35. Csiszar A, Smith K, Labinsky N, Orosz Z, Rivera A, Ungvari Z (2006) Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: Role of NF-kappaB inhibition. Am J Physiol Heart Circ Physiol 291:1694–1699

    Article  Google Scholar 

  36. Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK (2011) Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 6:e16530

    Article  CAS  Google Scholar 

  37. Vergara D, Simeone P, Toraldo D, Del Boccio P, Vergaro V, Leporatti S, Pieragostino D, Tinelli A, De Domenico S, Alberti S, Urbani A, Salzet M, Santino A, Maffia M (2012) Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol Biosyst 8:1078–1087

    Article  CAS  Google Scholar 

  38. Sharma S, Chopra K, Kulkarni SK (2007) Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: Participation of nitric oxide F TNF-alpha. Phytother F Res 21:278–283

    Article  CAS  Google Scholar 

  39. Anekonda TS (2006) Resveratrol a boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326

    Article  CAS  Google Scholar 

  40. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  Google Scholar 

  41. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 14:421–433

    Article  Google Scholar 

  42. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  CAS  Google Scholar 

  43. Lippi G, Franchini M, Favaloro EJ, Targher G (2010) Moderate red wine consumption and cardiovascular disease risk: Beyond the “French paradox”. Semin Thromb Hemost 36:59–70

    Article  CAS  Google Scholar 

  44. Lippi G, Franchini M, Guidi GC (2010) Red wine and cardiovascular health: The “French paradox” revisited. Int J Wine Res 2:1–7

    CAS  Google Scholar 

  45. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  Google Scholar 

  46. Fulda S (2010) Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discov Today 15:757–765

    Article  CAS  Google Scholar 

  47. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  Google Scholar 

  48. Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci Jan Sci 121:9–15

    Article  Google Scholar 

  49. Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481

    Article  CAS  Google Scholar 

  50. Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, Mukhtar H, Ahmad N (2011) Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res 55:1169–1176

    Article  CAS  Google Scholar 

  51. Szekeres T, Saiko P, Fritzer-Szekeres M, Djavan B, Jäger W (2011) Chemopreventive effects of resveratrol and resveratrol derivatives. Ann N Y Acad Sci 1215:89–95

    Article  CAS  Google Scholar 

  52. Goldberg DM, Yan J, Soleas GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36:79–87

    Article  CAS  Google Scholar 

  53. Hoshino J, Park EJ, Kondratyuk TP, Marler L, Pezzuto JM, van Breemen RB, Mo S, Li Y, Cushman M (2010) Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J Med Chem 53:5033–5043

    Article  CAS  Google Scholar 

  54. Cai H, Sale S, Britton RG, Brown K, Steward WP, Gescher AJ (2011) Pharmacokinetics in mice and metabolism in murine and human liver fractions of the putative cancer chemopreventive agents 3,4,5,5,7-pentamethoxyflavone and tricin (4,5,7-trihydroxy-3,5-dimethoxyflavone). Cancer Chemother Pharmacol 67:255–263

    Article  CAS  Google Scholar 

  55. Hassan-Khabbar S, Cottart CH, Wendum D, Vibert F, Clot JP, Savouret JF, Conti M, Nivet-Antoine V (2008) Post ischemic treatment by trans-resveratrol in rat liver ischemia–reperfusion: A possible strategy in liver surgery. Liver Transpl 14:451–459

    Article  Google Scholar 

  56. Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release 158:182–193

    Article  CAS  Google Scholar 

  57. Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  CAS  Google Scholar 

  58. Fisher R, Budde I, Hain R (1997) Stilbene synthase gene expression causes changes in flower color and male sterility in tobacco. Plant J 11:489–498

    Article  Google Scholar 

  59. Hipskind JD, Paiva NL (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact 13:551–562

    Article  CAS  Google Scholar 

  60. Liu Z, Zhuang C, Sheng S, Shao L, Zhao W, Zhao S (2011) Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. Plant Cell Rep 30:2027–2036

    Article  CAS  Google Scholar 

  61. Yu CKY, Lam CNW, Springob K, Schmidt J, Chu IK, Lo C (2006) Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene. Plant Cell Physiol 47:1017–1021

    Article  CAS  Google Scholar 

  62. Liu S, Hu Y, Wang X, Zhong J, Lin Z (2006) High content of resveratrol in lettuce transformed with a stilbene synthase gene of Parthenocissus henryana. J Agric Food Chem 54:8082–8085

    Article  CAS  Google Scholar 

  63. Thomzik JE, Stenzel K, Stocker R, Schrejer PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phythoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  64. Rühmann S, Treutter D, Fritsche S, Briviba K, Szankowski I (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54:4633–4640

    Article  Google Scholar 

  65. Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  CAS  Google Scholar 

  66. Coutos-Thévenot P, Poissont B, Bonomelli A, Yean H, Breda C, Buffard D, Esnaut R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  Google Scholar 

  67. Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tiss Organ Cult 92:197–206

    Article  CAS  Google Scholar 

  68. Stark-Lorenzen P, Nelke B, Hänßler G, Mühlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep 16:668–673

    Article  CAS  Google Scholar 

  69. Yu CKY, Springob K, Schmidt J, Nicholson RL, Chu IK, Yip WK, Lo C (2005) A stilbene synthase gene (SbSTS1) is involved in host and non host defense responses in sorghum. Plant Physiol 138:393–401

    Article  CAS  Google Scholar 

  70. Fettig S, Hess D (1999) Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res 8:179–189

    Article  CAS  Google Scholar 

  71. Serazetdinova L, Oldach K, Lörz H (2005) Expression of transgenic stilbene synthase in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J Plant Physiol 162:985–1002

    Article  CAS  Google Scholar 

  72. Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 6:1004–1012

    Article  Google Scholar 

  73. Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant compounds resveratrol glucosides. Transgenic Res 13:203–214

    Article  CAS  Google Scholar 

  74. Seppänen SK, Syrjälä L, von Weissenberg K, Teeri TH, Paajanen L, Pappinen A (2004) Antifungal activity of stilbenes in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep 22:584–593

    Article  Google Scholar 

  75. Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 12:807–812

    Google Scholar 

  76. Vishnevetsky J, White TL Jr, Palmateer AJ, Flaishman M, Cohen Y, Elad Y, Velcheva M, Hanania U, Sahar N, Dgani O, Perl A (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–72

    Article  CAS  Google Scholar 

  77. Richter A, de Kathen A, de Lorenzo G, Briviba K, Hain R, Ramsay G, Jacobsen HJ, Kiesecker H (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep 25:1166–1173

    Article  CAS  Google Scholar 

  78. Kobayashi C, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Article  CAS  Google Scholar 

  79. Lim JD, Yun SJ, Chung IM, Yu CY (2005) Resveratrol synthase transgene expression and accumulation of resveratrol glycoside in Rehmannia glutinosa. Mol Breed 16:219–233

    Article  CAS  Google Scholar 

  80. Hanhineva K, Kokko H, Siljanen H, Rogachev I, Aharoni A, Kärenlampi SO (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria x ananassa). J Exp Bot 60:2093–2106

    Article  CAS  Google Scholar 

  81. Giovinazzo G, D’Amico L, Paradiso A, Bollini R, Sparvoli F, De Gara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57–69

    Article  CAS  Google Scholar 

  82. Schijlen EGWM, de Vos CHR, Jonker H, van den Broeck H, Molthoff J, van Tunen AJ, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444

    Article  CAS  Google Scholar 

  83. Nicoletti I, DeRossi A, Giovinazzo G, Corradini D (2007) Identification an quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon sculentum Mill.) by reversed phase HPLC with photodiode array and mass detection. J Agric Food Chem 55:3304–3311

    Article  CAS  Google Scholar 

  84. D’Introno A, Paradiso A, Scoditti E, D’Amico L, De Paolis A, Carluccio MA, Nicoletti I, DeGara L, Santino A, Giovinazzo G (2009) Antioxidant and anti-inflammatory properties of tomato fruit synthesizing different amount of stilbenes. Plant Biotechnol J 7:422–429

    Article  Google Scholar 

  85. Ingrosso I, Bonsegna S, De Domenico S, Laddomada B, Blando F, Santino A, Giovinazzo G (2011) Novel findings into parthenocarpy in tomato: A stilbene synthase approach to induce male sterility. Plant Physiol Biochem 49:1092–1099

    Article  CAS  Google Scholar 

  86. Hüsken A, Baumert A, Milkowski C, Becker HC, Strack D, Möllers C (2005) Resveratrol glycoside (piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553–1562

    Article  Google Scholar 

  87. Schwekendiek A, Spring O, Heyerick A, Pickel B, Pitsch NT, Peschke F, de Keukeleire D, Weber G (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J Agric Food Chem 55:7002–7009

    Article  CAS  Google Scholar 

  88. Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  89. Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  Google Scholar 

  90. Luo J, Butelli E, Hil L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326

    Article  CAS  Google Scholar 

  91. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J Nutr 134:3479S–3485S

    CAS  Google Scholar 

  92. de Kok TM, van Breda SG, Manson MM (2008) Mechanisms of combined action of different chemopreventive dietary compounds: A review. Eur J Nutr 47:51–59

    Article  Google Scholar 

  93. Prior RL, Wu XL, Gu LW, Hager TJ, Hager A, Howard LR (2008) Whole berries versus berry anthocyanins: Interactions with dietary fat levels in the C57BL/6 J mouse model of obesity. J Agric Food Chem 56:647–653

    Article  CAS  Google Scholar 

  94. Titta L, Trinei M, Stendardo M, Berniakovich I, Petroni K, Tonelli C, Riso P, Porrini M, Minucci S, Pelicci PG, Rapisarda P, Reforgiato Recupero G, Morelli G (2010) Blood orange juice inhibits fat accumulation in mice. Int J Obes (Lond) 34:578–588

    Article  CAS  Google Scholar 

  95. Cencic A, Langerholc T (2010) Functional cell models of the gut and their applications in food microbiology—A review. Int J Food Microbiol 141:S4–S14

    Article  Google Scholar 

  96. Murcia MA, Martínez-Tomé M (2001) Antioxidant activity of resveratrol compared with common food additives. J Food Protect 64:379–384

    CAS  Google Scholar 

  97. Martin C, Butelli E, Petroni K, Tonelli C (2011) How can research on plants contribute to promoting human health? Plant Cell 23:1685–1699

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Giovinazzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovinazzo, G., Ingrosso, I., Paradiso, A. et al. Resveratrol Biosynthesis: Plant Metabolic Engineering for Nutritional Improvement of Food. Plant Foods Hum Nutr 67, 191–199 (2012). https://doi.org/10.1007/s11130-012-0299-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-012-0299-8

Keywords

Navigation