Skip to main content
Log in

Preparing entangled states by Lyapunov control

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from \(|2\rangle \) to \(|1\rangle \). This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Domokos, P., Raimond, J.M., Brune, M., Haroche, S.: Simple cavity-QED two-bit universal quantum logic gate: the principle and expected performances. Phys. Rev. A 52, 3554 (1995)

    Article  ADS  Google Scholar 

  3. Pellizzari, T., Gardiner, S.A., Cirac, J.I., Zoller, P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788 (1995)

    Article  ADS  Google Scholar 

  4. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  5. Pachos, J., Walther, H.: Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. 89, 187903 (2002)

    Article  ADS  Google Scholar 

  6. Banchi, L., Bayat, A., Verrucchi, P., Bose, S.: Nonperturbative entangling gates between distant qubits using uniform cold atom chains. Phys. Rev. Lett. 106, 140501 (2011)

    Article  ADS  Google Scholar 

  7. Unanyan, R.G., Vitanov, N.V., Bergmann, K.: Preparation of entangled states by adiabatic passage. Phys. Rev. Lett. 87, 137902 (2001)

    Article  ADS  Google Scholar 

  8. Malinovsky, V.S., Sola, I.R.: Quantum control of entanglement by phase manipulation of time-delayed pulse sequences. Phys. Rev. A 70, 042304 (2004)

    Article  ADS  Google Scholar 

  9. Creatore, C., Brierley, R.T., Phillips, R.T., Littlewood, P.B., Eastham, P.R.: Creation of entangled states in coupled quantum dots via adiabatic rapid passage. Phys. Rev. B 86, 155442 (2012)

    Article  ADS  Google Scholar 

  10. Chakhmakhchyan, L., Leroy, C., Ananikian, N., Guérin, S.: Generation of entanglement in systems of intercoupled qubits. Phys. Rev. A 90, 042324 (2014)

    Article  ADS  Google Scholar 

  11. Beige, A., Braun, D., Tregenna, B., Knight, P.L.: Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 85, 1762 (2000)

    Article  ADS  Google Scholar 

  12. Browne, D.E., Plenio, M.B., Huelga, S.F.: Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett. 91, 067901 (2003)

    Article  ADS  Google Scholar 

  13. Marr, C., Beige, A., Rempe, G.: Entangled-state preparation via dissipation-assisted adiabatic passages. Phys. Rev. A 68, 033817 (2003)

    Article  ADS  Google Scholar 

  14. Metz, J., Trupke, M., Beige, A.: Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett. 97, 040503 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Wang X.T., Schirmer, S.G.: Generating maximal entanglement between non-interacting atoms by collective decay and symmetry breaking. arXiv:1005.2114, (2010)

  16. Kastoryano, M.J., Reiter, F., Sorensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)

    Article  ADS  Google Scholar 

  17. Busch, J., De, S., Ivanov, S.S., Torosov, B.T., Spiller, T.P., Beige, A.: Cooling atom-cavity systems into entangled states. Phys. Rev. A 84, 022316 (2011)

    Article  ADS  Google Scholar 

  18. Schneider, S., Milburn, G.J.: Entanglement in the steady state of a collective-angular-momentum (Dicke) model. Phys. Rev. A 65, 042107 (2002)

    Article  ADS  Google Scholar 

  19. Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008)

    Article  ADS  Google Scholar 

  20. Vacanti, G., Beige, A.: Cooling atoms into entangled states. New J. Phys. 11, 083008 (2009)

    Article  ADS  Google Scholar 

  21. Verstraete, F., Wolf, M.M., Cirac, J.I.: Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 9, 633 (2009)

    Article  Google Scholar 

  22. Cho, J., Bose, S., Kim, M.S.: Optical pumping into many-body entanglement. Phys. Rev. Lett. 106, 020504 (2011)

    Article  ADS  Google Scholar 

  23. Beauchard, K., Coron, J.M., Mirrahimi, M., Rouchon, P.: Implicit Lyapunov control of finite dimensional Schrödinger equations. Syst. Control Lett. 56, 388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Coron, J.M., Grigoriu, A., Lefter, C., Turinici, G.: Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling. New J. Phys. 11, 105034 (2009)

    Article  ADS  Google Scholar 

  25. Wang, X.T., Schirmer, S.G.: Entanglement generation between distant atoms by Lyapunov control. Phys. Rev. A 80, 042305 (2009)

    Article  ADS  Google Scholar 

  26. Wang, X.T., Bayat, A., Bose, S., Schirmer, S.G.: Global control methods for Greenberger–Horne–Zeilinger-state generation on a one-dimensional Ising chain. Phys. Rev. A 82, 012330 (2010)

    Article  ADS  Google Scholar 

  27. Hou, S.C., Khan, M.A., Yi, X.X., Dong, D.Y., Petersen, I.R.: Optimal Lyapunov-based quantum control for quantum systems. Phys. Rev. A 86, 022321 (2012)

    Article  ADS  Google Scholar 

  28. Shi, Z.C., Zhao, X.L., Yi, X.X.: Preparation of topological modes by Lyapunov control. Sci. Rep. 5, 13777 (2015)

    Article  ADS  Google Scholar 

  29. D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Taylor and Francis Group, Boca Raton (2007)

    Book  MATH  Google Scholar 

  30. Kuang, S., Cong, S.: Lyapunov control methods of closed quantum systems. Automatica 44, 98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001)

    Article  ADS  Google Scholar 

  32. Barreiro, J.T., Müller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470, 486 (2011)

    Article  ADS  Google Scholar 

  33. Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  34. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)

    Article  ADS  Google Scholar 

  35. Li, X.Q., Wu, Y.W., Steel, D.G., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2003)

    Article  ADS  Google Scholar 

  36. Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197 (2004)

    Article  ADS  Google Scholar 

  37. Blattmann, R., Krenner, H.J., Kohler, S., Hänggi, P.: Entanglement creation in a quantum-dot-nanocavity system by Fourier-synthesized acoustic pulses. Phys. Rev. A 89, 012327 (2014)

    Article  ADS  Google Scholar 

  38. Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B Atom. Mol. Opt. Phys. 32, 4535 (1999)

    Article  ADS  Google Scholar 

  39. Amniat-Talab, M., Guérin, S., Sangouard, N., Jauslin, H.R.: Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage. Phys. Rev. A 71, 023805 (2005)

    Article  ADS  Google Scholar 

  40. Boca, A., Miller, R., Birnbaum, K.M., Boozer, A.D., Mckeever, J., Kimble, H.J.: Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004)

    Article  ADS  Google Scholar 

  41. Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants No. 11534002, 61475033 and 11475037) and supported by the Fundamental Research Funds for the Central Universities under Grant No. DUT15LK26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Yi.

Appendix

Appendix

In this physical model, we now demonstrate that the Bell state can also be achieved by fractional stimulated Raman adiabatic passage (f-STIRAP) in which the Stokes pulses and the pump pulses vanish simultaneously eventually. The system Hamiltonian reads

$$\begin{aligned} H_{0}=\sum _{j=1}^{2}\Big (\Omega _{j}|1\rangle _{jj}\langle 2|+g|2\rangle _{jj}\langle 0|a+ H.c.\Big ). \end{aligned}$$
(33)

In the single excitation subspace, the system eigenstate with null eigenvalue can be described by

$$\begin{aligned} |\lambda _{1}\rangle =\mathcal {N}_1(\Omega _{2}|10,0\rangle -\frac{\Omega _1\Omega _2}{g}|00,1\rangle +\Omega _{1}|01,0\rangle ). \end{aligned}$$
(34)

From this expression, it is straightforward to find that the eigenstate \(|\lambda _{1}\rangle \) becomes \(|10,0\rangle \) or \(|01,0\rangle \) in the absence of the classical fields, and the eigenstate \(|\lambda _{1}\rangle \) becomes the Bell state \(|\lambda _{1}\rangle =\frac{1}{\sqrt{2}}(|10\rangle +|01\rangle )\otimes |0\rangle \) if both the classical fields \(\Omega _1(t)\) and \(\Omega _2(t)\) vanish adiabatically and satisfy the condition \(\lim \limits _{t\rightarrow +\infty }\frac{\Omega _1(t)}{\Omega _2(t)}=1\). This is the main idea of f-STIRAP which is based on the adiabatical evolution of dark state.

Fig. 6
figure 6

a The time evolution of the fidelity of the Bell state. b The time evolution of the classical fields \(\Omega _j(t), j=1,2\). Other parameters are set as \(\alpha =\frac{\pi }{4}\), \(T=35\), and \(\tau =0.6T\)

Assume that the initial state is \(|10,0\rangle \) again. At first, the second atom is driven by Stokes pulses, and the first atom is driven by pump pulses after a certain time delay. In order to satisfy the condition \(\lim \limits _{t\rightarrow +\infty }\frac{\Omega _1(t)}{\Omega _2(t)}=1\), one can design the following waveform for the two classical fields (we can also refer to the control fields like in the main text),

$$\begin{aligned}&\Omega _{1}(t)=\Omega _{0}e^{-\frac{(t-\tau )^2}{T^2}}\sin \alpha , \nonumber \\&\Omega _{2}(t)=\Omega _{0}e^{-\frac{(t-\tau )^2}{T^2}}\cos \alpha +e^{-\frac{(t+\tau )^2}{T^2}}. \end{aligned}$$
(35)

Figure 6a displays the time evolution of the fidelity. Although the order of magnitude in the control fields almost equals each other in the f-STIRAP and Lyapunov control, the dynamics behaviors are quite different. We can find that the evolution time is much longer than that in Lyapunov control. This is a universal drawback for the f-STIRAP because it must be adiabatical during the whole evolution, while Lyapunov control is not restricted to this adiabatical condition. Additionally, the waveform of classical field \(\Omega _2(t)\) is superposition of two types of pulses and different from the classical field \(\Omega _1(t)\), which is required to control the temporal sequence of classical fields with high precision. Nevertheless, we can adopt a phase modulator with square pulses and only make \(\pi \) phase difference for two classical fields in Lyapunov control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z.C., Wang, L.C. & Yi, X.X. Preparing entangled states by Lyapunov control. Quantum Inf Process 15, 4939–4953 (2016). https://doi.org/10.1007/s11128-016-1441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1441-6

Keywords

Navigation