Skip to main content
Log in

Survey of control performance in quantum information processing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

There is a rich variety of physics underlying the fundamental gating operations for quantum information processing (QIP). A key aspect of a QIP system is how noise may enter during quantum operations and how suppressing or correcting its effects can best be addressed. Quantum control techniques have been developed to specifically address this effort, although a detailed classification of the compatibility of controls schemes with noise sources found in common quantum systems has not yet been performed. This work numerically examines the performance of modern control methods for suppressing decoherence in the presence of noise forms found in viable quantum systems. The noise-averaged process matrix for controlled one-qubit and two-qubit operations are calculated across noise found in systems driven by Markovian open quantum dynamics. Rather than aiming to describe the absolute best control scheme for a given physical circumstance, this work serves instead to classify quantum control behavior across a large class of noise forms so that opportunities for improving QIP performance may be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark, C.R., Metodi, T.S., Gasster, S.D., Brown, K.R.: Resource requirements for fault-tolerant quantum simulation: the ground state of the transverse ising model. Phys. Rev. A 79, 062314–062323 (2009)

    Article  ADS  Google Scholar 

  2. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031007–031034 (2012)

    Google Scholar 

  3. Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. (2013). doi:10.1038/ncomms3524

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univeristy Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, present and future. N. J. Phys. 12(7), 075008–75076 (2010)

    Article  Google Scholar 

  6. Glaser, J.S., Boscain, U., Calarco, T., Koch, P.C., Köckenberger, W., Kosloff, R., Kuprov, I., Luy, B., Schirmer, S., Schulte-Herbrüggen, T., Sugny, D., Frank Wilhelm, K.: Training schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69(12), 1–24 (2015)

    Article  ADS  Google Scholar 

  7. Siegel, R., Nakashima, T.T., Wasylishen, R.E.: Signal-to-noise enhancement of NMR spectra of solids using multiple-pulse spin-echo experiments. Concepts Magn. Reson. Part A 26A(2), 62–77 (2005)

    Article  Google Scholar 

  8. Wimperis, S.: Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments. J. Magn. Reson. Ser. A 109(2), 221–231 (1994)

    Article  ADS  Google Scholar 

  9. Rego, L.G.C., Santos, L.F., Batista, V.S.: Coherent control of quantum dynamics with sequences of unitary phase-kick pulses. Ann. Rev. Phys. Chem. 60(1), 293–320 (2009)

    Article  ADS  Google Scholar 

  10. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Khodjasteh, K., Viola, L.: Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett. 102, 080501–080505 (2009)

    Article  ADS  Google Scholar 

  12. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Khodjasteh, K., Viola, L.: Dynamical quantum error correction of unitary operations with bounded controls. Phys. Rev. A 80, 032314–032333 (2009)

    Article  ADS  Google Scholar 

  14. Kabytayev, C., Green, T.J., Khodjasteh, K., Biercuk, M.J., Viola, L., Brown, K.R.: Robustness of composite pulses to time-dependent control noise. Phys. Rev. A 90, 012316–012325 (2014)

    Article  ADS  Google Scholar 

  15. Khodjasteh, K., Bluhm, H., Viola, L.: Automated synthesis of dynamically corrected quantum gates. Phys. Rev. A 86, 042329–042336 (2012)

    Article  ADS  Google Scholar 

  16. Merrill, J.T., Brown, K.R.: Progress in Compensating Pulse Sequences for Quantum Computation. Wiley, NewYork (2014)

    Book  MATH  Google Scholar 

  17. Suzuki, M.: General theory of higher-order decomposition of exponential operators and symplectic integrators. Phys. Lett. A 165, 387–395 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dawson, C.M., Nielsen, M.A.: The solovay–kitaev algorithm. Quant. Inf. Comp. 6, 81–95 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Brown, K.R., Harrow, A.W., Chuang, I.L.: Arbitrarily accurate composite pulse sequences. Phys. Rev. A 70, 052318–052322 (2004)

    Article  ADS  Google Scholar 

  20. Brown, K.R., Harrow, A.W., Chuang, I.L.: Erratum: Arbitrarily accurate composite pulse sequences [Phys. Rev. A 70, 052318 (2004)]. Phys. Rev. A 72, 039905 (2005)

  21. Ho, T.-S., Dominy, J., Rabitz, H.: Landscape of unitary transformations in controlled quantum dynamics. Phys. Rev. A 79, 013422–013438 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Rabitz, H., Hsieh, M., Rosenthal, C.: Landscape for optimal control of quantum-mechanical unitary transformations. Phys. Rev. A 72, 052337–052342 (2005)

    Article  ADS  Google Scholar 

  23. Hsieh, M., Rabitz, H.: Optimal control landscape for the generation of unitary transformations. Phys. Rev. A 77, 042306–042311 (2008)

    Article  ADS  Google Scholar 

  24. Hsieh, M., Rebing, W., Rabitz, H.: Topology of the quantum control landscape for observables. J. Chem. Phys. 130(10), 10410–10416 (2009)

    Article  Google Scholar 

  25. Rabitz, H., Ho, T.-S., Hsieh, M., Kosut, R., Demiralp, M.: Topology of optimally controlled quantum mechanical transition probability landscapes. Phys. Rev. A 74, 012721–012730 (2006)

    Article  ADS  Google Scholar 

  26. Bruer, H.-P.: The Theory of Open Quantum Systems. Oxford Univ. Press, Oxford (2002)

    Google Scholar 

  27. Hocker, D., Brif, C., Grace, M.D., Donovan, A., Ho, T.-S., Tibbetts, K.M., Wu, R., Rabitz, H.: Characterization of control noise effects in optimal quantum unitary dynamics. Phys. Rev. A 90, 062309–062318 (2014)

    Article  ADS  Google Scholar 

  28. Brockwell, P.J., Davis, R.J.: Introduction to Time Series and Forecasting, 2nd edn. Springer, NewYork (2002)

    Book  MATH  Google Scholar 

  29. Stark, H., Woods, J.W.: Probability, Random Processes, and Estimation Theory for Engineers. Prentice Hall, Upper Saddle River (1986)

    Google Scholar 

  30. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308–032321 (2001)

    Article  ADS  Google Scholar 

  31. Boscain, U., Chitour, Y.: Time-optimal synthesis for left-invariant control systems on so(3). SIAM J. Control Optim. 44(1), 111–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Beltrani, V., Dominy, J., Ho, T.-S., Rabitz, H.: Exploring the top and bottom of the quantum control landscape. J. Chem. Phys. 134(19), 194106 (2011)

    Article  ADS  Google Scholar 

  33. Rothman, A., Ho, T.-S., Rabitz, H.: Exploring the level sets of quantum control landscapes. Phys. Rev. A 73, 053401–053410 (2006)

    Article  ADS  Google Scholar 

  34. David, H., Herschel R.: Meeting a high-performance quantum technology primary objective in the presence of secondary objectives. Phys. Rev. A (2016, submitted)

  35. Uhrig, G.S.: Keeping a quantum bit alive by optimized \(\pi \)-pulse sequences. Phys. Rev. Lett. 98, 100504–100508 (2007)

    Article  ADS  Google Scholar 

  36. Khodjasteh, K., Lidar, D.A., Viola, L.: Arbitrarily accurate dynamical control in open quantum systems. Phys. Rev. Lett. 104, 090501–090505 (2010)

    Article  ADS  Google Scholar 

  37. Hocker, D., Kosut, R., Rabitz, H.: Peet: a matlab tool for estimating physical gate errors in quantum information processing systems. Quant. Inf. Process. (2016). doi:10.1007/s11128-016-1337-5

  38. Martinis, J.M., Nam, S., Aumentado, J., Lang, K.M., Urbina, C.: Decoherence of a superconducting qubit due to bias noise. Phys. Rev. B 67, 094510–094520 (2003)

    Article  ADS  Google Scholar 

  39. Martinis, J.M.: Superconducting phase qubits. Quant. Inf. Process. 8(2–3), 81–103 (2009)

    Article  Google Scholar 

  40. Strauch, F.W., Johnson, P.R., Dragt, A.J., Lobb, C.J., Anderson, J.R., Wellstood, F.C.: Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005–167009 (2003)

    Article  ADS  Google Scholar 

  41. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252), 240–244, 07 (2009)

    Article  ADS  Google Scholar 

  42. Bialczak, R.C., McDermott, R., Ansmann, M., Hofheinz, M., Katz, N., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Cleland, A.N., Martinis, J.M.: 1/f Flux noise in Josephson phase qubits. Phys. Rev. Lett. 99, 187006–187010 (2007)

    Article  ADS  Google Scholar 

  43. Martinis, J.M., Cooper, K.B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K.D., Cicak, K., Oh, S., Pappas, D.P., Simmonds, R.W., Yu, C.C.: Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503–210507 (2005)

    Article  ADS  Google Scholar 

  44. Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimentalissuesincoherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103(3), 259–328 (1998)

    Article  MATH  Google Scholar 

  45. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenkovic, B., Langer, C., Rosen-band, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422(6930), 412–415, 03 (2003)

    Article  ADS  Google Scholar 

  46. Schneider, S., Milburn, G.J.: Decoherence in ion traps due to laser intensity and phase fluctuations. Phys. Rev. A 57, 3748–3752 (1998)

    Article  ADS  Google Scholar 

  47. Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  Google Scholar 

  48. Saffman, M., Walker, T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347–022368 (2005)

    Article  ADS  Google Scholar 

  49. Taylor, J.M., Petta, J.R., Johnson, A.C., Yacoby, A., Marcus, C.M., Lukin, M.D.: Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315–035332 (2007)

    Article  ADS  Google Scholar 

  50. Coish, W.A., Loss, D.: Singlet-triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337–125349 (2005)

    Article  ADS  Google Scholar 

  51. Hu, X., Sarma, S.D.: Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. Phys. Rev. Lett. 96, 100501–100505 (2006)

    Article  ADS  Google Scholar 

  52. Tibbetts, K.W.M., Brif, C., Grace, M.D., Donovan, A., Hocker, D.L., Ho, T.-S., Wu, R.-B., Rabitz, H.: Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations. Phys. Rev. A 86, 062309–062325 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the (D.H.) National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE 1148900), (H.R.for the basic concepts) National Science Foundation (CHE-1058644) and (Y.Z., R.K., T.B) ARO-MURI (W911NF-11-1-2068). This work was also supported by the (Y.Z., R.K., T.B) (H.R. for the illustrations) Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center Contract No. D11PC20165. The US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hocker.

Appendix

Appendix

1.1 Trotter–Suzuki and Solovay–Kitaev control

Both TS and SK methods utilize the identity that imperfect rotations by integer units of \(\pi \) can accumulate and eventually cancel out the error through [17]

$$\begin{aligned} M(2k\pi ,\phi )&= \pm R(2k\pi \epsilon ,\phi ), \quad k = 1,2,... \end{aligned}$$
(45)

For TS control, sets of expansion coefficients \(p_{jn}\) are chosen such that

$$\begin{aligned} R(\epsilon ,\phi )&= \varPi _{j,i} \exp (ip_{jn} A_i) + O(\epsilon ^{n+1}), \end{aligned}$$
(46)

for sets of non-commuting matrices \(\{A_i\}\). With individual qubit rotation in the X-Y plane, it can be shown that a even-ordered correction sequences \(R_{TS2k}\) can be constructed through the identities

$$\begin{aligned} \text {N2k}(\theta ,\phi )&= \hat{S}_k(\phi _k,2) M(\theta ,\phi ), \end{aligned}$$
(47)
$$\begin{aligned} \hat{S}_1(\phi _1,m)&= M(m\pi ,\phi _1)M(2m\pi ,-\phi _1)M(m\pi ,\phi _1), \end{aligned}$$
(48)
$$\begin{aligned} \hat{S}_j(\phi _j,m)&= \hat{S}_{j-1}(\phi _j,m)^{4j-1} \hat{S}_{j-1}(\phi _j,-2m) \hat{S}_{j-1}(\phi _j,m)^{4j-1}. \end{aligned}$$
(49)

The recursive formula for the sequence in Eq. (47) uses only imperfect rotations along special angles \(\phi _j\), and relies on the initial mapping \(\hat{S}_1\) and the concatenated formula in Eq. (49). The angles of rotation are chosen to satisfy the decomposition in (46) and are given by

$$\begin{aligned} \phi _j&= \cos ^{-1}\left[ -\frac{\theta }{8\pi f_j}\right] \end{aligned}$$
(50)
$$\begin{aligned} f_j&= \left( 2^{2j-1}-2\right) f_{j-1},\quad f_1 = 1 \end{aligned}$$
(51)

The identities in Eq. (47) and (49) alongside angle choices from Eq. (50) yield the second sequence N2 of Eq. (39). Due to the long length of higher-order sequences, only N2 is simulated in this work. For example, the fourth-order sequence is given by

$$\begin{aligned} N4&= \hat{S}_2(\phi _2,2)^4 \hat{S}_2(\phi _2,-4) \hat{S}_2(\phi _2,2)^4 M(\theta ,\phi ), \quad \phi _2 = \cos ^{-1} (-\theta /48\pi ), \end{aligned}$$
(52)

SK methods utilize sets of \(2\pi \) rotations that rely on suppressing errors related to commutators of lower-order commutators [18]. The first-order sequence SK1 of Eq. (40) can be shown to cancel first-order errors to \( M(\theta ,\phi )\) for rotation angle choice of \(\phi _1 = \cos ^{-1}\left( -\frac{\theta }{4\pi }\right) \):

$$\begin{aligned} \hat{\text {SK}}_{1}M(\theta ,\phi )&= \left[ I+i\frac{\theta }{2}\left( X\cos (\phi )+Y\sin (\phi )\right) \epsilon \right] \nonumber \\&\qquad \times \left[ I - i \frac{\theta }{2} \left( X\cos (\phi ) + Y\sin (\phi ) \right) (\epsilon +1 ) \right] \nonumber \\&= I -i \frac{\theta }{2} \left( X\cos (\phi ) + Y\sin (\phi ) \right) + O(\epsilon ^2) \nonumber \\&= R(\theta ,\phi ) + O(\epsilon ^2) . \end{aligned}$$
(53)

The higher-order SK sequences concatenate lower-order sequences and cancel subsequently higher-order errors related to commutators of lower orders. This suppression relies on an identity from the proof of the Solovay–Kitaev theorem that gives a relation between commutators of the lower-order rotation operators,

$$\begin{aligned} \exp (-iA\epsilon ^j) \exp (-iB\epsilon ^k) \exp (iA\epsilon ^j) \exp (iB\epsilon ^k)&= \exp (-i[A,B]\epsilon ^{j+k} + O(\epsilon ^{j+k+1}). \end{aligned}$$
(54)

Equation (54) yields the second-order terms \(SK_{2} (\phi _2) \) of Eq. (43), and leads to the full error-correction sequence SK2 of Eq. (42).

1.2 Optimal control

Unconstrained primitive control utilizes an optimization to locate controls beyond the amplitude constraints of each system. Here we calculate the necessary gradient \(\delta \chi _{ {\mathcal {E}}}/ \delta c(t)\) for a given control c(t) . The gradient of J with respect to c(t) can first be expressed as

$$\begin{aligned} \frac{\delta J}{\delta c(t)}&= - \frac{1}{2N^2} \text {Re} \left( \text {Tr} \left[ \chi _W^{\dag } \frac{\delta \chi _{{\mathcal {E}}(T)}}{\delta c(t)} \right] \right) , \end{aligned}$$
(55)

where the explicit time dependence upon \(\chi _{{\mathcal {E}}}\) has now been shown for clarity. Calculation of \(\delta \chi _{{\mathcal {E}}}(T) / \delta c(t)\) can be performed by examining the time evolution of a linear disturbance to \(\chi _{{\mathcal {E}}}(T)\). First note that analogous to the unitary evolution operator in a closed quantum system, the time evolution of \(\chi _{{\mathcal {E}}}(t)\) follows a similar equation of motion:

$$\begin{aligned} \frac{\partial }{\partial t} \chi _{{\mathcal {E}}}(t)&= {\mathcal {L}}(t) \chi _{{\mathcal {E}}}(t). \end{aligned}$$
(56)

Inserting a variation \(\delta \chi _{{\mathcal {E}}}(t)\) into Eq. (56) and keeping first-order terms yield an equation for evolution of dynamical disturbances to the process matrix as

$$\begin{aligned} \frac{\partial }{\partial t} \delta \chi _{{\mathcal {E}}}(t)&= {\mathcal {L}}(t) \delta \chi _{{\mathcal {E}}}(t) + \delta {\mathcal {L}}(t)\chi _{{\mathcal {E}}}(t) , \end{aligned}$$
(57)

where the \(\delta L(t)\) corresponds to a variation of the control in the superoperator.

$$\begin{aligned} \delta {\mathcal {L}}(t)&= -i \left[ {\mathbb {I}}_{N} \otimes \delta H(t) - \delta H(t) \otimes {\mathbb {I}}_{N} \right] . \end{aligned}$$
(58)

For example, in the case of an X rotation in the RWA (i.e., Eq. (6), \(\phi =0\), \(\delta \omega (t) = 0\)), this term is expressed as

$$\begin{aligned} \delta {\mathcal {L}}(t)&= -\frac{i \delta c(t)}{2} \left[ {\mathbb {I}}_{N} \otimes X - X \otimes {\mathbb {I}}_{N} \right] \end{aligned}$$
(59)

Equation (57) is an inhomogeneous differential equation and has a homogenous solution with Green’s function \(G(t,t')\),

$$\begin{aligned} \frac{\partial }{\partial t} G(t,t')&= {\mathcal {L}}(t) G(t,t'). \end{aligned}$$
(60)

The above equation can be identified as the time evolution of the process matrix in Eq. (56), and \(G(t,t')\) represents evolution of the process matrix from time point \(t'\) to time t. Expressing this Green’s function in a separable form \(G(t,t')\) relates it to the process matrix,

$$\begin{aligned} G(t,t')&= G(t,0)G(0,t') \nonumber \\&= G(t,0) G^{\dag }(t',0) \nonumber \\&= \chi _{{\mathcal {E}}}(t)\chi ^{\dag }_{{\mathcal {E}}}(t') . \end{aligned}$$
(61)

The inhomogeneous solution to \(\delta \chi _{{\mathcal {E}}}(T)\) can now be expressed as

$$\begin{aligned} \delta \chi _{{\mathcal {E}}}(T)&= \int _0^T G(T,t) \delta {\mathcal {L}}(t) \chi _{{\mathcal {E}}}(t) \mathrm{d}t \nonumber \\&= \chi _{{\mathcal {E}}}(T) \int _0^T \chi ^{\dag }_{{\mathcal {E}}}(t) \delta {\mathcal {L}}(t) \chi _{{\mathcal {E}}}(t) \mathrm{d}t. \end{aligned}$$
(62)

The gradient \(\delta \chi _{{\mathcal {E}}}(T) / \delta c(t)\) can then be identified from the total first-order variation in Eq. (62) as

$$\begin{aligned} \frac{\delta \chi _{{\mathcal {E}}}(T) }{\delta c(t)}&= \chi _{{\mathcal {E}}}(T) \chi ^{\dag }_{{\mathcal {E}}}(t) \frac{\partial {\mathcal {L}}(t)}{\partial c(t)} \chi _{{\mathcal {E}}}(t). \end{aligned}$$
(63)

and the entire gradient of J can then be explicitly written from Eqs. (63) and (55) as

$$\begin{aligned} \frac{\delta J}{\delta c(t)}&= - \frac{1}{2N^2} \text {Re} \left( \text {Tr} \left[ \chi _W^{\dag } \chi _{{\mathcal {E}}}(T) \left( \chi ^{\dag }_{{\mathcal {E}}}(t) \frac{\partial {\mathcal {L}}(t)}{\partial c(t)} \chi _{{\mathcal {E}}}(t) \right) \right] \right) , \end{aligned}$$
(64)

Optimal control pulses were found through the D-MORPH algorithm of Eqs. (34) and (35) to minimize J. As the quantum dot qubit system was excluded from optimal control, all systems were simulated under the RWA, in which controls were either a bias pulse in the Z direction, or the amplitudes for an on-resonance field in the XY plane. To explore the performance beyond primitive gate operations with constant amplitudes, a Gaussian temporal envelope amplitude was instead used for initial guesses \(c_i(t)\). For rotation through angle \(\theta \), the initial guess is expressed as

$$\begin{aligned} c(t)&= \frac{\theta }{T}\exp \left[ -\frac{8\pi }{T^2}(t-T/2)^2 \right] . \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocker, D., Zheng, Y., Kosut, R. et al. Survey of control performance in quantum information processing. Quantum Inf Process 15, 4361–4390 (2016). https://doi.org/10.1007/s11128-016-1406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1406-9

Keywords

Navigation