Skip to main content
Log in

Ordering states with coherence measures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantification of quantum coherence has attracted a growing attention, and based on various physical contexts, several coherence measures have been put forward. An interesting question is whether these coherence measures give the same ordering when they are used to quantify the coherence of quantum states. In this paper, we consider the two well-known coherence measures, the \(l_1\) norm of coherence and the relative entropy of coherence, to show that there are the states for which the two measures give a different ordering. Our analysis can be extended to other coherence measures, and as an illustration of the extension we further consider the formation of coherence to show that the \(l_1\) norm of coherence and the formation of coherence, as well as the relative entropy of coherence and the coherence of formation, do not give the same ordering too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Scully, M.O., Zubairy, M.S.: Quantum Optics. Canbrudge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Canbrudge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)

    Article  ADS  Google Scholar 

  4. Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10–18 (2013)

    Article  Google Scholar 

  5. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402-1–150402-6 (2014)

    Article  Google Scholar 

  6. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, -021001-1–-021001-11 (2015)

    Google Scholar 

  7. Rodríguez-Rosario, C.A., Frauenheim, T., Aspuru-Guzik, A.: Thermodynamics of quantum coherence. arXiv:1308.1245

  8. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401-1–140401-5 (2014)

    Article  ADS  Google Scholar 

  9. Åberg, J.: Quantifying Superposition. arXiv:quantph/0612146

  10. Toloui, B., Gour, G., Sanders, B.C.: Constructing monotones for quantum phase references in totally dephasing channels. Phys. Rev. A 84, 022322-1–022322-8 (2011)

    Article  ADS  Google Scholar 

  11. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: basic tools and equivalence classes of states under symmetric operations. New J. Phys. 15, 033001-1–033001-52 (2013)

    Article  ADS  Google Scholar 

  12. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007-1–033007-15 (2014)

    ADS  Google Scholar 

  13. Monras, A., Chécinska, A., Ekert, A.: Witnessing quantum coherence in the presence of noise. New J. Phys. 16, 063041-1–063041-28 (2014)

    Article  ADS  Google Scholar 

  14. Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302-1–052302-6 (2014)

    Article  ADS  Google Scholar 

  15. Smyth, C., Scholes, G.D.: Method of developing analytical multipartite delocalization measures for mixed W-like states. Phys. Rev. A 90, 032312-1–032312-6 (2014)

    Article  ADS  Google Scholar 

  16. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401-1–170401-5 (2014)

    Article  ADS  Google Scholar 

  17. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401-1–210401-6 (2015)

    Article  ADS  Google Scholar 

  18. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403-1–020403-6 (2015)

    ADS  MathSciNet  Google Scholar 

  19. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120-1–042120-6 (2015)

    Article  ADS  Google Scholar 

  20. Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330-1–042330-8 (2015)

    Article  ADS  Google Scholar 

  21. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115-1–052115-8 (2015)

    ADS  Google Scholar 

  22. Du, S., Bai, Z., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91, 052120-1–052120-5 (2015)

    ADS  Google Scholar 

  23. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124-1–022124-8 (2015)

    ADS  Google Scholar 

  24. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112-1–022112-7 (2015)

    ADS  Google Scholar 

  25. Mani, A., Karimipour, V.: Cohering and decohering power of quantum channels. Phys. Rev. A 92, 032331-1–032331-9 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cheng, S., Hall, M.J.W.: Complementarity relations for quantum coherence. Phys. Rev. A 92, 042101-1–042101-8 (2015)

    ADS  Google Scholar 

  27. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118-1–012118-6 (2015)

    Article  ADS  Google Scholar 

  28. Du, S., Bai, Z.F.: The Wigner–Yanase information can increase under phase sensitive incoherent operations. Ann. Phys. (N.Y.) 359, 136–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922-1–10922-9 (2015)

    ADS  Google Scholar 

  30. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404-1–120404-6 (2016)

    Article  ADS  Google Scholar 

  31. Eisert, J., Plenio, M.B.: A comparison of entanglement measures. J. Mod. Opt. 46, 145–154 (1999)

    Article  ADS  Google Scholar 

  32. Życzkowski, K.: Volume of the set of separable states. II. Phys. Rev. A 60, 3496–3507 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  33. Virmani, S., Plenio, M.B.: Ordering states with entanglement measures. Phys. Lett. A 268, 31–34 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Życzkowski, K., Bengtsson, I.: Relativity of pure states entanglement. Ann. Phys. (N.Y.) 295, 115–135 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Wei, T.C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110-1–022110-12 (2003)

    Article  ADS  Google Scholar 

  36. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307-1–042307-12 (2003)

    Article  ADS  Google Scholar 

  37. Miranowicz, A.: Decoherence of two maximally entangled qubits in a lossy nonlinear cavity. J. Phys. A 37, 7909–7922 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Miranowicz, A.: Violation of Bell inequality and entanglement of decaying Werner states. Phys. Lett. A 327, 272–283 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Verstraete, F., Porras, D., Cirac, J.I.: Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. Phys. Rev. Lett. 93, 227205-1–227205-4 (2004)

    ADS  Google Scholar 

  40. Miranowicz, A., Grudka, A.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326-1–032326-4 (2004)

    Article  ADS  Google Scholar 

  41. Miranowicz, A., Grudka, A.: A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B 6, 542–548 (2004)

    Article  ADS  Google Scholar 

  42. Ziman, M., Buzek, V.: Entanglement-induced state ordering under local operations. Phys. Rev. A 73, 012312-1–012312-4 (2006)

    Article  ADS  Google Scholar 

  43. Kinoshita, Y., Namiki, R., Yamamoto, T., Koashi, M., Imoto, N.: Selective entanglement breaking. Phys. Rev. A 75, 032307-1–032307-5 (2007)

    Article  ADS  Google Scholar 

  44. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–940 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. De Sen, A., Sen, U.: Can there be quantum correlations in a mixture of two separable states? J. Mod. Opt. 50, 981–985 (2003)

    ADS  MATH  Google Scholar 

  46. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303-1–042303-6 (2008)

    ADS  Google Scholar 

  47. Yeo, F., An, J.-H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A 82, 032340-1–032340-4 (2010)

    Article  ADS  Google Scholar 

  48. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 032101-1–032101-7 (2010)

    ADS  Google Scholar 

  49. Al-Qasimi, A., James, D.F.V.: Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. Phys. Rev. A 83, 032101-1–032101-4 (2011)

    ADS  Google Scholar 

  50. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108-‘1–052108-8 (2011)

    Article  ADS  Google Scholar 

  51. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A 44, 352002-1–352002-9 (2011)

    Article  MATH  Google Scholar 

  52. Lang, M.D., Caves, C.M., Shaji, A.: Entropic measures of nonclassical correlations. Int. J. Quantum Inf. 09, 1553–1586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Okrasa, M., Walczak, Z.: On two-qubit states ordering with quantum discords. Europhys. Lett. 98, 40003–40008 (2012)

    Article  ADS  Google Scholar 

  54. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF China through Grant No. 11575101 and the National Basic Research Program of China through Grant No. 2015CB921004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Tong.

Appendix

Appendix

We show that any two d(\(\ge \)4)-dimensional pure states defined by Eq. (15) necessarily satisfy \(\mathcal {C}_{l_1}(|\varphi ^{(d)}_1\rangle )<\mathcal {C}_{l_1}(|\varphi ^{(d)}_2\rangle )\) and \(\mathcal {C}_r(|\varphi ^{(d)}_1\rangle )>\mathcal {C}_r(|\varphi ^{(d)}_2\rangle )\) as long as \(|\varphi _1\rangle \) and \(|\varphi _2\rangle \) do. To this end, we only need to prove the following theorem: If the two \((d-1)\)-dimensional states expressed as

$$\begin{aligned} |\varphi ^{(d-1)}_1\rangle =\sum _{i=1}^{d-1}a_i|i\rangle ,\quad |\varphi ^{(d-1)}_2\rangle&=\sum _{i=1}^{d-1}b_i|i\rangle , \end{aligned}$$
(16)

satisfy \(\mathcal {C}_{l_1}(|\varphi ^{(d-1)}_1\rangle )<\mathcal {C}_{l_1}(|\varphi ^{(d-1)}_2\rangle )\) and \(\mathcal {C}_r(|\varphi ^{(d-1)}_1\rangle )>\mathcal {C}_r(|\phi ^{(d-1)}_2\rangle )\), then the two d-dimensional states defined by

$$\begin{aligned} |\varphi ^{(d)}_1\rangle =\alpha _d|\varphi ^{(d-1)}_1\rangle +\beta _d|d\rangle ,~~ |\varphi ^{(d)}_2\rangle =\alpha _d|\varphi ^{(d-1)}_1\rangle +\beta _d|d\rangle \end{aligned}$$
(17)

with \(|\alpha _d|^2+|\beta _d|^2=1\) and \(0<|\alpha _d|<1\), satisfy \(\mathcal {C}_{l_1}(|\varphi ^{(d)}_1\rangle )<\mathcal {C}_{l_1}(|\varphi ^{(d)}_2\rangle )\) and \(\mathcal {C}_r(|\varphi ^{(d)}_1\rangle )>\mathcal {C}_r(|\varphi ^{(d)}_2\rangle )\).

We now prove the theorem.

By the definition of the \(l_1\)-norm of coherence, we have

$$\begin{aligned} \begin{aligned} \mathcal {C}_{l_1}(|\varphi ^{(d-1)}_1\rangle )=&2\sum _{1\le i<j\le d-1}|a_ia_j|, \end{aligned} \end{aligned}$$
(18)

and

$$\begin{aligned} \begin{aligned} \mathcal {C}_{l_1}(|\varphi ^{(d)}_1\rangle )=&2|\alpha _d|^2\sum _{1\le i<j\le d-1}|a_ia_j|+2|\alpha _d\beta _d|\sum _{i=1}^{d-1}|a_i|,\\ =&2|\alpha _d|^2\sum _{1\le i<j\le d-1}|a_ia_j|+2|\alpha _d\beta _d|\sqrt{\left( \sum _{i=1}^{d-1}|a_i|\right) ^2}\\ =&2|\alpha _d|^2\sum _{1\le i<j\le d-1}|a_ia_j|+2|\alpha _d\beta _d|\sqrt{1+2\sum _{1\le i<j\le d-1}|a_ia_j|},\\ =&|\alpha _d|^2C_{l_1}(|\varphi ^{(d-1)}_1\rangle )+2|\alpha _d\beta _d|\sqrt{1+C_{l_1}(|\varphi ^{(d-1)}_1\rangle )}, \end{aligned} \end{aligned}$$
(19)

and similarly,

$$\begin{aligned} \begin{aligned} \mathcal {C}_{l_1}(|\varphi ^{(d-1)}_2\rangle )=&2\sum _{1\le i<j\le d-1}|b_ib_j|, \end{aligned} \end{aligned}$$
(20)

and

$$\begin{aligned} \begin{aligned} \mathcal {C}_{l_1}(|\varphi ^{(d)}_2\rangle )=&|\beta _d|^2C_{l_1}(|\varphi ^{(d-1)}_2\rangle )+2|\alpha _d\beta _d|\sqrt{1+C_{l_1}(|\varphi ^{(d-1)}_2\rangle }). \end{aligned}\end{aligned}$$
(21)

Eqs. (19) and (21) show that \(\mathcal {C}_{l_1}(|\phi ^{(d)}_1\rangle )<\mathcal {C}_{l_1}(|\phi ^{(d)}_2\rangle )\) if \(\mathcal {C}_{l_1}(|\varphi ^{(d-1)}_1\rangle )<\mathcal {C}_{l_1}(|\varphi ^{(d-1)}_2\rangle )\).

By the definition of the relative entropy of coherence, we have

$$\begin{aligned} \begin{aligned} \mathcal {C}_r(|\varphi ^{(d-1)}_1\rangle )=&-\sum _{i=1}^{d-1}|a_i|^2\log _2|a_i|^2, \end{aligned} \end{aligned}$$
(22)

and

$$\begin{aligned} \begin{aligned} \mathcal {C}_r({|\varphi ^{(d)}_1\rangle })=&-|\beta _d|^2\log _2|\beta _d|^2 -\sum _{i=1}^{d-1}|\alpha _d|^2|a_i|^2\log _2(|\alpha _d|^2|a_i|^2)\\ =&-|\beta _d|^2\log _2|\beta _d|^2-|\alpha _d|^2\log _2|\alpha _d|^2 -|\alpha _d|^2\sum _{i=1}^{d-1}|a_i|^2\log _2|a_i|^2\\ =&|\alpha _d|^2C_r(|\varphi ^{(d-1)}_1\rangle )+H(|\alpha _d|^2), \end{aligned} \end{aligned}$$
(23)

where \(H(x)=-x\log _2x-(1-x)\log _2(1-x)\) is the binary Shannon entropy function, and similarly,

$$\begin{aligned} \begin{aligned} \mathcal {C}_r(|\varphi ^{(d-1)}_2\rangle )=&-\sum _{i=1}^{d-1}|b_i|^2\log _2|b_i|^2, \end{aligned} \end{aligned}$$
(24)

and

$$\begin{aligned} \mathcal {C}_r({|\varphi ^{(d)}_2\rangle })=|\alpha _d|^2C_r(|\varphi ^{(d-1)}_2\rangle )+H(|\alpha _d|^2). \end{aligned}$$
(25)

Eqs. (24) and (25) show that \(\mathcal {C}_r(|\varphi ^{(d)}_1\rangle )>\mathcal {C}_r(|\varphi ^{(d)}_2\rangle )\) if \(\mathcal {C}_r(|\varphi ^{(d-1)}_1\rangle )>\mathcal {C}_r(|\varphi ^{(d-1)}_2\rangle )\). This completes the proof of the theorem. With this theorem, it is easy to obtain the conclusion related to Eq. (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C.L., Yu, XD., Xu, G.F. et al. Ordering states with coherence measures. Quantum Inf Process 15, 4189–4201 (2016). https://doi.org/10.1007/s11128-016-1398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1398-5

Keywords

Navigation