Skip to main content
Log in

Remote preparation of W states from imperfect bipartite sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Several proposals to produce tripartite W-type entanglement are probabilistic even if no imperfections are considered in the processes. We provide a deterministic way to remotely create W states out of an EPR source. The proposal is made viable through measurements (which can be demolitive) in an appropriate three-qubit basis. The protocol becomes probabilistic only when source flaws are considered. It turns out that, even in this situation, it is robust against imperfections in two senses: (i) It is possible, after postselection, to create a pure ensemble of W states out of an EPR source containing a systematic error; (ii) If no postselection is done, the resulting mixed state has a fidelity, with respect to a pure \(|W\rangle \), which is higher than that of the imperfect source in comparison with an ideal EPR source. This simultaneously amounts to entanglement concentration and lifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Bennet, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  4. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Pan, J.-W., et al.: Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515 (2000)

    Article  ADS  Google Scholar 

  8. Rauschenbeutel, A., et al.: Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000)

    Article  ADS  Google Scholar 

  9. Sackett, C.A., et al.: Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    Article  ADS  Google Scholar 

  10. Zhao, Z., et al.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  11. Lu, C.-Y., et al.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)

    Article  Google Scholar 

  12. Yao, X.-C., et al.: Observation of eight-photon entanglement. Nat. Photonics 6, 225–228 (2012)

    Article  ADS  Google Scholar 

  13. Wieczorek, W., et al.: Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009)

    Article  ADS  Google Scholar 

  14. Prevedel, R., et al.: Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009)

    Article  ADS  Google Scholar 

  15. Wang, X.-W., Yang, G.-J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Das, D., Dogra, S., Dorai, K., Arvind: Experimental construction of a W superposition state and its equivalence to the Greenberger-Horne-Zeilinger state under local filtration. Phys. Rev. A 92, 022307 (2015)

  17. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  18. Mikami, H., Li, Y., Fukuoka, K., Kobayashi, T.: New high-efficiency source of a three-photon W state and its full characterization using quantum state tomography. Phys. Rev. Lett. 95, 150404 (2005)

    Article  ADS  Google Scholar 

  19. Mikami, H., Li, Y., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004)

    Article  ADS  Google Scholar 

  20. Wieczorek, W., Kiesel, N., Schmid, C., Weinfurter, H.: Multiqubit entanglement engineering via projective measurements. Phys. Rev. A 79, 022311 (2009)

    Article  ADS  Google Scholar 

  21. Tashima, T., et al.: Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state. Phys. Rev. Lett. 102, 130502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Dogra, S., Dorai, K., Arvind: Experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor. Phys. Rev. A 91, 022312 (2015)

  23. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)

    Article  ADS  Google Scholar 

  24. Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: Generation of multiphoton entangled states with linear optical elements. Chin. Phys. Lett. 25, 3558 (2008)

    Article  ADS  Google Scholar 

  25. Tashima, T., et al.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77, 030302 (2008)

    Article  ADS  Google Scholar 

  26. Tashima, T., et al.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)

    Article  ADS  Google Scholar 

  27. Tashima, T., et al.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105, 210503 (2010)

    Article  ADS  Google Scholar 

  28. Xu, W., Zhao, X., Long, G.: Efficient generation of multi-photon W states by joint-measurement. Prog. Nat. Sci. 18, 119–122 (2008)

    Article  Google Scholar 

  29. Yang, R.-C., Zhang, T.-C.: Robust preparation of atomic W states without any excitations. Opt. Commun. 284, 3164–3167 (2011)

    Article  ADS  Google Scholar 

  30. Tong, X., et al.: A hybrid-system approach for W state and cluster state generation. Opt. Commun. 310, 166–172 (2014)

    Article  ADS  Google Scholar 

  31. Yesilyurt, C., et al.: An optical setup for deterministic creation of four partite W state. Acta Phys. Pol. A 127, 1230 (2015)

    Article  Google Scholar 

  32. Yesilyurt, C. et al.: Deterministic local expansion of W states. arXiv: 1602.04166 (2016)

  33. Özdemir, S.K., et al.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)

    Article  Google Scholar 

  34. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12, 2965–2975 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)

    Article  ADS  Google Scholar 

  36. Ozaydin, F., et al.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)

    Article  ADS  Google Scholar 

  37. Zang, X.-P., et al.: Generating multi-atom entangled W states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015)

    Article  ADS  Google Scholar 

  38. Li, K., Yang, M., Yang, Q., Cao, Z.-L.: Fusion of W-like states in optical system. Laser Phys. 26, 025203 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. Xu, F., et al.: Experimental quantum key distribution with source flaws. Phys. Rev. A 92, 032305 (2015)

    Article  ADS  Google Scholar 

  40. Mizutani, A., Imoto, N., Tamaki, K.: Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws. Phys. Rev. A 92, 060303(R) (2015)

    Article  ADS  Google Scholar 

  41. Özdemir, S.K., Miranowicz, A., Koashi, M., Imoto, N.: Pulse-mode quantum projection synthesis: effects of mode mismatch on optical state truncation and preparation. Phys. Rev. A 66, 053809 (2002)

    Article  ADS  Google Scholar 

  42. Scherer, A., Howard, R.B., Sanders, B.C., Tittel, W.: Quantum states prepared by realistic entanglement swapping. Phys. Rev. A 80, 062310 (2009)

    Article  ADS  Google Scholar 

  43. Pan, J.-W., Zeilinger, A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  44. Bennett, C., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  45. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  46. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  47. Vaidman, L., Yoran, N.: Methods for reliable teleportation. Phys. Rev. A 59, 116 (1999)

    Article  ADS  Google Scholar 

  48. Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  50. Wei, T.-C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell-state analysis. Phys. Rev. A 75, 060305(R) (2007)

    Article  ADS  MathSciNet  Google Scholar 

  51. Sheng, Y.-B., Deng, F.-G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  52. Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A 84, 022340 (2011)

    Article  ADS  Google Scholar 

  53. Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011)

    Article  ADS  Google Scholar 

  54. Kim, Y.-H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  55. Zaidi, H.A., van Loock, P.: Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through its program INCT-IQ, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) was acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Parisio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, M.G.M., Cunha, M.M. & Parisio, F. Remote preparation of W states from imperfect bipartite sources. Quantum Inf Process 15, 3869–3879 (2016). https://doi.org/10.1007/s11128-016-1358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1358-0

Keywords

Navigation