Skip to main content
Log in

An optical gate for simultaneous fusion of four photonic W or Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In order to create large-scale polarization entangled W states, there have been several proposals and some experimental demonstrations. An outstanding proposal is a simple setup which probabilistically fuses two W states of arbitrary sizes \(n\ge 3\) and \(m\ge 3\), creating a W state of size \(n+m-2\) (Ozdemir et al., in: New J Phys 13:103003, 2011). Using this setup as building blocks, we propose a new setup which can fuse four W states simultaneously. The proposed setup can fuse W states of size 2, i.e. Bell states, as well. We study the resource cost of our fusion process for two main scenarios, i.e. starting from sizes 2 and 3. We present some cost efficient cases, as compared to the previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao, Z., et al.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004)

    Article  ADS  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Greenberger, D.M., Horne, M., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. D’Hondt E, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A. 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  7. Zeilinger, A., Horne, M.A., Weinfurter, H., Zukowski, M.: Three-particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031 (1997)

    Article  ADS  Google Scholar 

  8. Tashima, T., Wakatsuki, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto N, N.: Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state. Phys. Rev. Lett. 102, 130502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Tashima, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A. 77, 030302 (2008)

    Article  ADS  Google Scholar 

  10. Tashima, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. A. 11, 023024 (2009)

    Article  ADS  Google Scholar 

  11. Tashima, T., Kitano, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105, 210503 (2010)

    Article  ADS  Google Scholar 

  12. Li, Y., Kobayashi, T.: Four-photon W state using two-crystal geometry parametric down-conversion. Phys. Rev. A. 70, 014301 (2004)

    Article  ADS  Google Scholar 

  13. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  14. Mikami, H., Li, Y., Fukuoka, K., Kobayashi, T.: New high-efficiency source of a three-photon W state and its full characterization using quantum state tomography. Phys. Rev. Lett. 95, 150404 (2005)

    Article  ADS  Google Scholar 

  15. Ozdemir, S.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)

    Article  ADS  Google Scholar 

  16. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A. 87, 032331 (2013)

    Article  ADS  Google Scholar 

  17. Okamoto, R., Hofmann, H.F., Takeuchi, S., Sasaki, K.: Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005)

    Article  ADS  Google Scholar 

  18. Kiesel, N., Schmid, C., Weber, U., Ursin, R., Weinfurter, H.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)

    Article  ADS  Google Scholar 

  19. Plantenberg, J.H., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836–839 (2007)

    Article  ADS  Google Scholar 

  20. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  21. Schmidt-Kaler, F., et al.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  22. Tame, M.S., Ozdemir, S.K., Koashi, M., Imoto, N., Kim, M.S.: Compact Toffoli gate using weighted graph states. Phys. Rev. A. 79, 020302(R) (2009)

    Article  ADS  Google Scholar 

  23. Fiurasek, J.: Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A. 73, 062313 (2006)

    Article  ADS  Google Scholar 

  24. Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)

    Article  ADS  Google Scholar 

  25. Monz, T., Kim, K., Hansel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)

    Article  ADS  Google Scholar 

  26. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  27. Xiao, Y.-F., Ozdemir, S.K., Gaddam, V., Dong, C.-H., Imoto, N., Ya, L.: Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity. Opt. Exp. 16, 21462 (2008)

    Article  ADS  Google Scholar 

  28. Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A. 32, 2287 (1985)

    Article  ADS  Google Scholar 

  29. Imoto, N., Watkins, S., Sasaki, Y.: A nonlinear optical-fiber interferometer for nondemolitional measurement of photon number. Opt. Commun. 61, 159163 (1987)

    Article  Google Scholar 

  30. Braginsky, V.B., Khalili, F.Y.: Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  31. Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J.M., Haroche, S.: Seeing a single photon without destroying it. Nature 400, 239 (1999)

    Article  ADS  Google Scholar 

  32. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A. 79, 022301 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Ozaydin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yesilyurt, C., Bugu, S. & Ozaydin, F. An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf Process 12, 2965–2975 (2013). https://doi.org/10.1007/s11128-013-0578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0578-9

Keywords

Navigation