Skip to main content
Log in

Efficient multiparty quantum key agreement protocol based on commutative encryption

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A secure multiparty quantum key agreement protocol using single-qubit states is proposed. The agreement key is computed by performing exclusive-OR operation on all the participants’ secret keys. Based on the commutative property of the commutative encryption, the exclusive-OR operation can be performed on the plaintext in the encrypted state without decrypting it. Thus, it not only protects the final shared key, but also reduces the complexity of the computation. The efficiency of the proposed protocol, compared with previous multiparty QKA protocols, is also improved. In the presented protocol, entanglement states, joint measurement and even the unitary operations are not needed, and only rotation operations and single-state measurement are required, which are easier to be realized with current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Shor, Pw, Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shor P.W.: Algorithms for quantum computation: discrete logrithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134 (1994)

  8. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. Du, R.G., Sun, Z.W., Wang, B.H., Long, D.Y.: Quantum secret sharing of secure direct communication using one-time pad. Int. J. Theor. Phys. 51, 2727–2736 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with quantum identification. Int. J. Quantum Inf. 10, 1250008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun, Zw, Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster state. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  13. Sun, Zw, Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  15. Sun, Zhiwei, Jianping, Yu., Wang, Ping, Lingling, Xu: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91, 052303 (2015)

    Article  ADS  Google Scholar 

  16. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

  17. Tsai, C., Hwang, T.: On quantum key agreement protocol. R.O.C, Technical Report, C-S-I-E, NCKU, Taiwan (2009)

  18. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  20. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dongsu, Shen, Wenping, Ma., Lili, Wang: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313 (2014)

    Article  MathSciNet  Google Scholar 

  22. Sun, Zhiwei, Jianping, Yu., Wang, Ping: Efficient multiparty quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Sun, Z., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 3411 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chitra, S., Nasir, A., Anirban, P.: Protocols of quantum key agreement solely using bell states and bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kanamori, Yoshito, Yoo, Seong-Moo, Gregory, Don A., Sheldon, Frederick T.: Authentication protocol using quantum superposition states. Int. J. Netw. Secur. 9(2), 101–108 (2009)

    Google Scholar 

  29. Hwang, Won-Young: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  30. Lo, Hoi-Kwong, Ma, Xiongfeng, Chen, Kai: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  31. Wang, Xiang-Bin: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  32. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  33. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  34. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  35. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000)

    Article  ADS  Google Scholar 

  37. Liu, W.-J., Liu, C., Chen, H.-W., Liu, Z.-H., Yuan, M.-X., Lu, J.-S.: Improvement on “an efficient protocol for the quantum private comparison of equality with W state”. Int. J. Quantum Inf. 12(01), 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments and suggestions that help to improve the paper. This work is supported by the National Natural Science Foundation of China (No. 61402293, 61300204), Seed Funding from Scientific and Technical Innovation Council of Shenzhen Government (No. 827-000035), Natural Science Foundation of Guangdong (2015A030313630), Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, the Science and Technology Innovation Projects of Shenzhen (Nos. JCYJ20150324141711665 and JCYJ20150324141711694), Natural Science Foundation of SZU (No. 201435), Shenzhen R&D Program (GJHZ20140418191518323) and Postdoctoral Science Foundation of China (No. 2015M572360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Huang, J. & Wang, P. Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf Process 15, 2101–2111 (2016). https://doi.org/10.1007/s11128-016-1253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1253-8

Keywords

Navigation