Skip to main content
Log in

Efficient quantum state transfer in an engineered chain of quantum bits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barends, R., Kelly, J., Megrant, A., Sank, D., Jeffrey, E., Chen, Y., Yin, Y., Chiaro, B., Mutus, J., Neill, C., OMalley, P., Roushan, P., Wenner, J., White, T.C., Cleland, A.N., Martinis, J.M.: Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111(8), 080,502 (2013). doi:10.1103/PhysRevLett.111.080502

    Article  Google Scholar 

  2. Blais, A., Gambetta, J., Wallraff, A., Schuster, D., Girvin, S., Devoret, M., Schoelkopf, R.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75(3), 1–21 (2007). doi:10.1103/PhysRevA.75.032329

    Article  Google Scholar 

  3. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207,901 (2003). doi:10.1103/PhysRevLett.91.207901

    Article  Google Scholar 

  4. Bose, S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48(1), 13–30 (2007). doi:10.1080/00107510701342313

    Article  ADS  Google Scholar 

  5. Córcoles, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015). doi:10.1038/ncomms7979

    Article  Google Scholar 

  6. Devoret, M.H.: Quantum Fluctuations in Electrical Circuits. Elsevier, New York (1997)

    Google Scholar 

  7. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339(6124), 1169–1174 (2013). doi:10.1126/science.1231930

    Article  MathSciNet  ADS  Google Scholar 

  8. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252), 240–244 (2009). doi:10.1038/nature08121

    Article  ADS  Google Scholar 

  9. Eckert, K., Romero-Isart, O., Sanpera, A.: Efficient quantum state transfer in spin chains via adiabatic passage. New J. Phys. 9(5), 155–155 (2007). doi:10.1088/1367-2630/9/5/155

    Article  MathSciNet  ADS  Google Scholar 

  10. Fedorov, A., Feofanov, A.K., MacHa, P., Forn-Díaz, P., Harmans, C.J.P.M., Mooij, J.E.: Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. Phys. Rev. Lett. 105(6), 060,503 (2010). doi:10.1103/PhysRevLett.105.060503

    Article  Google Scholar 

  11. Frisk Kockum, A.: Modelling spectroscopy on transmon qubits in an undercoupled resonator. M.Sc thesis, Chalmers University of Technology (2010)

  12. Gambetta, J.M., Houck, A.A., Blais, A.: Superconducting qubit with purcell protection and tunable coupling. Phys. Rev. Lett. 106(3), 030,502 (2011). doi:10.1103/PhysRevLett.106.030502

    Article  Google Scholar 

  13. Houck, A.A., Koch, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Life after charge noise: recent results with transmon qubits. Quantum Inf. Process. 8(2–3), 105–115 (2009). doi:10.1007/s11128-009-0100-6

    Article  Google Scholar 

  14. Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., OMalley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66–69 (2015). doi:10.1038/nature14270

    Article  ADS  Google Scholar 

  15. Koch, J., Yu, T., Gambetta, J., Houck, A., Schuster, D., Majer, J., Blais, A., Devoret, M., Girvin, S., Schoelkopf, R.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76(4), 042,319 (2007). doi:10.1103/PhysRevA.76.042319

    Article  Google Scholar 

  16. Koch, R.H., Keefe, G.A., Milliken, F.P., Rozen, J.R., Tsuei, C.C., Kirtley, J.R., Divincenzo, D.P.: Experimental demonstration of an oscillator stabilized josephson flux qubit. Phys. Rev. Lett. 96(12), 127,001 (2006). doi:10.1103/PhysRevLett.96.127001

    Article  Google Scholar 

  17. Kockum, A.F., Sandberg, M., Vissers, M.R., Gao, J., Johansson, G., Pappas, D.P.: Detailed modelling of the susceptibility of a thermally populated, strongly driven circuit-QED system. J. Phys. B At. Mol. Opt. Phys. 46(22), 224014 (2013)

    Article  ADS  Google Scholar 

  18. Lucero, E., Barends, R., Chen, Y., Kelly, J., Mariantoni, M., Megrant, A., OMalley, P., Sank, D., Vainsencher, A., Wenner, J., White, T., Yin, Y., Cleland, A.N., Martinis, J.M.: Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8, 719–723 (2012). doi:10.1038/nphys2385

    Article  Google Scholar 

  19. Lyakhov, A., Bruder, C.: Use of dynamical coupling for improved quantum state transfer. Phys. Rev. B 74(23), 235,303 (2006). doi:10.1103/PhysRevB.74.235303

    Article  Google Scholar 

  20. Oskin, M., Chong, F.T., Chuang, I.L., Kubiatowicz, J.: Building Quantum Wires: The Long and the Short of it. Proceedings of the 30th annual international symposium on computer architecture (ISCA’03), pp. 374–385 (2003)

  21. Paik, H., Schuster, D., Bishop, L., Kirchmair, G., Catelani, G., Sears, A., Johnson, B., Reagor, M., Frunzio, L., Glazman, L., Girvin, S., Devoret, M., Schoelkopf, R.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107(24), 240501 (2011). doi:10.1103/PhysRevLett.107.240501

    Article  ADS  Google Scholar 

  22. Reed, M.D., DiCarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482(7385), 382–385 (2012). doi:10.1038/nature10786

    Article  ADS  Google Scholar 

  23. Romito, A., Fazio, R., Bruder, C.: Solid-state quantum communication with Josephson arrays. Phys. Rev. B 71(10), 100,501 (2005). doi:10.1103/PhysRevB.71.100501

    Article  Google Scholar 

  24. Schwarz, M.J., Goetz, J., Jiang, Z., Niemczyk, T., Deppe, F., Marx, A., Gross, R.: Gradiometric flux qubits with a tunable gap. New J. Phys. 15, 045,001 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from the Laboratory for Physical Sciences, IARPA, and the Joint Quantum Institute. This work is property of the US Government and not subject to copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Pappas.

Appendix

Appendix

Here we derive our expressions for nearest-neighbor coupling of the transmon qubits. We start from the circuit shown in Fig. 1b. The input and output terminals are the points that connect the Josephson junctions (\(J_1\) and \(J_2\)) to the circuit. We select \(J_1\) to be the input and \(J_2\) the output. We remove the shunting capacitances \(C_{12}\) and \(C_{34}\), since these can be viewed as part of the source (load) impedance and concentrate on the coupling network. The equivalent open output voltage \(V_\mathrm{out}^T\) is given by the expression

$$\begin{aligned} V_\mathrm{out}^T=\frac{C_{13}C_{24}-C_{14}C_{23}}{(C_{13}+C_{23}) (C_{14}+C_{24})}V_\mathrm{in}. \end{aligned}$$
(8)

We then short circuit the output and calculate the shorting current

$$\begin{aligned} I_s=\frac{V_\mathrm{in}i\omega (C_{13}C_{24}-C_{23}C_{14} )}{C_{13}+C_{23}+C_{14}+C_{24}}. \end{aligned}$$
(9)

Instead of rewriting the source voltage as \(V_\mathrm{out}^T\) as is done in the standard Thevenin equivalent we follow the example in appendix A of Ref. [15] and introduce a shunt capacitance \(\tilde{C}_{B2}\) to the output and keep the source voltage to be \(V_\mathrm{in}\). The circuit now consists of a source at voltage \(V_\mathrm{in}\), an impedance in series with the source and a shunt impedance, parallel with the output. The series impedance gives the condition

$$\begin{aligned} Z_\mathrm{in}=\frac{V_\mathrm{in}}{I_s}=\frac{1}{i\omega C_\mathrm{in}}=\frac{C_{13}+C_{14}+C_{23}+C_{24}}{i\omega (C_{13}C_{24}-C_{14}C_{23})}. \end{aligned}$$
(10)

We then find the shunt impedance from voltage division by requiring that across the shunt impedance should be \(V_\mathrm{out}\) derived above. This gives an expression for a shunt capacitance \(\tilde{C}_{B2}\):

$$\begin{aligned} \tilde{C}_{B2}=\frac{C_{13}C_{14}+2C_{14}C_{23}+ C_{23}C_{24}}{C_{13}+C_{14}+C_{23}+C_{24}}. \end{aligned}$$
(11)

Changing the input and output sides we can also introduce a shunt capacitance on the input \(\tilde{C}_{B1}\). We define new shunt capacitance by reintroducing the source (load) capacitance \(C_{12}\) (\(C_{34}\)) so that \(C_{B1}=\tilde{C}_{B1}+C_{12}\) and \(C_{B2}=\tilde{C}_{B2}+C_{34}\). The capacitive network now consists of three capacitances \(C_\mathrm{in}\), \(C_{B1}\) and \(C_{B2}\) in a \(\pi \)- circuit. We now introduce the node fluxes \(\varPhi _1\) and \(\varPhi _2\) at the each side of the coupling capacitance \(C_c\) branch. As a first step in quantizing the circuit (see Ref. [6]) we write down the Lagrangian:

$$\begin{aligned} \mathscr {L}= & {} \frac{C_{B1}\dot{\varPhi }_1^2}{2}+ \frac{C_{B2}\dot{\varPhi }_2^2}{2}+\frac{C_{c}(\dot{\varPhi }_2- \dot{\varPhi }_1)^2}{2}+E_{J1}\cos (2\pi \varPhi _1/\varPhi _0)\nonumber \\&+\,E_{J2}\cos (2\pi \varPhi _2/\varPhi _0). \end{aligned}$$
(12)

We then get the classical Hamiltonian through the standard Legendre transformation by expressing \(\dot{\varPhi }_1\) and \(\dot{\varPhi }_2\) as

$$\begin{aligned} \dot{\varPhi }_1=\frac{(C_{c}+C_{B2})p_1+C_cp_2}{C_cC_{B1}+C_cC_{B2}+C_{B1}C_{B2}} \end{aligned}$$
(13)
$$\begin{aligned} \dot{\varPhi }_2=\frac{(C_{c}+C_{B2})p_2+C_cp_1}{C_cC_{B1}+C_cC_{B2}+C_{B1}C_{B2}} \end{aligned}$$
(14)

where \(p_1\) and \(p_2\) are the canonical momentum:

$$\begin{aligned} p_1=\frac{\partial \mathscr {L}}{\partial \dot{\varPhi }_1} \end{aligned}$$
(15)
$$\begin{aligned} p_2=\frac{\partial \mathscr {L}}{\partial \dot{\varPhi }_2}. \end{aligned}$$
(16)

To get the quantum mechanical Hamiltonian we replace \( \varPhi _{1,2}\) and \(p_{1,2}\) with the quantum mechanical operators \(\hat{\varPhi }_{1,2}\) and \(\hat{p}_{1,2}\) that obey the commutation relations

$$\begin{aligned}{}[\hat{\varPhi }_n,\hat{p}_m]=i\delta _{n,m}\left( \frac{\varPhi _0}{2\pi }\right) \end{aligned}$$
(17)

where \(\delta _{n,m}\) is Kronecker’s delta. We now introduce the Cooper-pair number operator defined as \(\hat{n}_i=\hat{p}_i/2\mathrm {e}\). This allows us to write down the Hamiltonian shown in Eq. 2. In that expression we have defined the charging energies \(E_{CC}\), \(E_{C1}\) and \(E_{C2}\) in the re-normalized capacitances:

$$\begin{aligned} C_{ec}= & {} \frac{(C_{B1}C_{B2}+C_{B1}C_{c}+C_{B2}C_{c})^2}{C_{c}^2(C_{B1}+C_{B2})} \end{aligned}$$
(18)
$$\begin{aligned} C_{e1}= & {} \frac{(C_{B1}C_{B2}+C_{B1}C_{c}+C_{B2}C_{c})^2}{(C_{B1}C_{B2}C_{c}+ C_{B2}^2C_{c}+0.5(C_{B1}C_{B2}^2+C_{B1}C_{c}^2+C_{B2}C_{c}^2))} \end{aligned}$$
(19)
$$\begin{aligned} C_{e2}= & {} \frac{(C_{B1}C_{B2}+C_{B1}C_{c}+C_{B2}C_{c})^2}{(C_{B1}C_{B2} C_{c}+C_{B1}^2C_{c}+0.5(C_{B1}^2C_{B2}+C_{B1}C_{c}^2+C_{B2}C_{c}^2))}. \end{aligned}$$
(20)

obtained by collecting the terms for \(\hat{n}_1\hat{n}_2\), \(\hat{n}_1^2\) and \(\hat{n}_2^2\), respectively. We see that if we let \(C_c \rightarrow 0\) we retain the expression for two uncoupled transmon qubits. These expressions can in the same manner be extended to the case where each qubit has two nearest neighbors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandberg, M., Knill, E., Kapit, E. et al. Efficient quantum state transfer in an engineered chain of quantum bits. Quantum Inf Process 15, 1213–1224 (2016). https://doi.org/10.1007/s11128-015-1152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1152-4

Keywords

Navigation