Skip to main content
Log in

Quantum digital-to-analog conversion algorithm using decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if it exists. In the practical point of view, we propose a nonunitary linear-time algorithm using quantum decoherence. It tacitly uses an exponentially large physical resource, which is typically a huge number of identical molecules. Quantumness of correlation appearing in the process of the algorithm is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is a tacit assumption that any DAC is designed to satisfy \(V_\mathrm{LSB}\gtrapprox \varepsilon _\mathrm{th}\) [30, 39]. Thus, setting \(n\) to a value slightly larger than \(m\) should be enough to satisfy the inequality \(2^{n-1}V_\mathrm{LSB} > 2^m (\varepsilon _\mathrm{th}+c)\). Even if the tacit assumption does not hold, a value of \(n\) enough to satisfy the inequality scales linearly in \(m\) as long as \(\varepsilon _\mathrm{th}\) is a constant.

  2. Note that fetching one resultant datum takes at least one step for a human in any parallel processing model. On the other hand, resultant data are usable for subsequent parallel processing. In fact, \(\rho _2\) can be directly used for further parallel processing within the ensemble quantum computing model.

  3. Photons are not physically connected like molecular spins; a projection using e.g. polarizing beam splitters for register \(\mathrm{R}\) does not separate signals in the ancilla register.

  4. Here, we are discussing an algorithmic structure. It is, of course, a formidable challenge to implement a large quantum circuit with linear optics [31].

  5. In general, the von Neumann entropy of a density matrix \(\rho \) is calculated as \(S(\rho )=-\mathrm{Tr}\rho \log _2\rho =-\sum _\lambda \lambda \log _2\lambda \) where \(\lambda \)’s are the eigenvalues of \(\rho \).

  6. Thus, the theory of quantum discord has a focus on the measurement stage. This is in contrast to the entanglement theory, which has a focus on the state generation stage [18, 38].

References

  1. Aiello, A., Puentes, G., Woerdman, J.P.: Linear optics and quantum maps. Phys. Rev. A 76, 032323-1-12 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  2. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit x states. Phys. Rev. A 81, 042105-1-7 (2010)

    ADS  Google Scholar 

  3. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  4. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  5. Bardhan, B.R., Brown, K.L., Dowling, J.P.: Dynamical decoupling with tailored wave plates for long-distance communication using polarization qubits. Phys. Rev. A 88, 052311-1-7 (2013)

    ADS  MATH  Google Scholar 

  6. Becker, E.D.: High Resolution NMR: Theory and Chemical Applications, 2nd edn. Academic Press, New York (1980)

    Google Scholar 

  7. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  8. Berglund, A.J.: Quantum coherence and control in one- and two-photon optical systems (2000). arXiv:quant-ph/0010001

  9. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA 99(6), 3388–3393 (2002)

    Article  ADS  MATH  Google Scholar 

  10. Brodutch, A., Gilchrist, A., Terno, D.R., Wood, C.J.: Quantum discord in quantum computation. J. Phys.: Conf. Ser. 306, 012030-1-11 (2011)

    ADS  Google Scholar 

  11. Brüschweiler, R.: Novel strategy for database searching in spin liouville space by NMR ensemble computing. Phys. Rev. Lett. 85, 4815–4818 (2000)

    Article  ADS  Google Scholar 

  12. Foroozandeh, M., Adams, R.W., Meharry, N.J., Jeannerat, D., Nilsson, M., Morris, G.A.: Ultrahigh-resolution NMR spectroscopy. Angew. Chem. Int. Ed. 53, 6990–6992 (2014)

    Article  Google Scholar 

  13. Freeman, R.: Selective excitation in high-resolution NMR. Chem. Rev. 91, 1397–1412 (1991)

    Article  Google Scholar 

  14. Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)

    Google Scholar 

  15. Hamieh, S., Kobes, R., Zaraket, H.: Positive-operator-valued measure optimization of classical correlations. Phys. Rev. A 70, 052325-1-6 (2004)

    Article  ADS  Google Scholar 

  16. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A. 34, 6899–6905 (2001)

  17. Holevo, A., Giovannetti, V.: Quantum channels and their entropic characteristics. Rep. Prog. Phys. 75, 046001-1-30 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Jeong, Y.C., Lee, J.C., Kim, Y.H.: Experimental implementation of a fully controllable depolarizing quantum operation. Phys. Rev. A 87, 014301-1-4 (2013)

    Article  ADS  Google Scholar 

  20. Jones, J.A.: Quantum computing with NMR. Prog. NMR Spectr. 59, 91–120 (2011)

    Article  MATH  Google Scholar 

  21. Khitrin, A.K., Michalski, M., Lee, J.S.: Reversible projective measurement in quantum ensembles. Quantum Inf. Process. 10, 557–566 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kitagawa, M., Kataoka, A., Nishimura, T.: Initialization and scalability of NMR quantum computers. In: Shapiro, J.H., Hirota, O. (eds.) Proceedings of the 6th International Conference on Quantum Communication, Measurement and Computing (QCMC2002), pp. 275–280. Rinton Press, Princeton (2003)

    Google Scholar 

  23. Klenke, A.: Probability Theory: A Comprehensive Course. Springer, London (2008)

    Book  Google Scholar 

  24. Kondo, Y., Nakahara, M., Tanimura, S., Kitajima, S., Uchiyama, C., Shibata, F.: Generation and suppression of decoherence in artificial environment for qubit system. J. Phys. Soc. Jpn. 76, 074002-1-11 (2007)

    ADS  Google Scholar 

  25. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501-1-4 (2008)

    Article  ADS  Google Scholar 

  26. Li, C.K., Roberts, R., Yin, X.: Decomposition of unitary matrices and quantum gates. Int. J. Quantum Inf. 11, 130015-1-10 (2013)

    MathSciNet  Google Scholar 

  27. Long, G.L., Xiao, L.: Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer. J. Chem. Phys. 119, 8473–8481 (2003)

    Article  ADS  MATH  Google Scholar 

  28. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303-1-6 (2008)

    ADS  Google Scholar 

  29. Mehring, M., Weberruß, V.A.: Object-Oriented Magnetic Resonance. Academic Press, San Diego (2001)

    Google Scholar 

  30. Microchip Technology Inc.: MCP4725 Data Sheet (2007); ibid. MCP4801/4811/4821 Data Sheet (2010)

  31. Milburn, G.J., White, A.G.: Quantum computing using optics. In: Meyers, R.A. (ed.) Computational Complexity, pp. 2437–2452. Springer, New York (2012)

    Chapter  Google Scholar 

  32. Morris, G.A., Freeman, R.: Selective excitation in Fourier transform nuclear magnetic resonance. J. Magn. Res. 29, 433–462 (1978)

    ADS  Google Scholar 

  33. Nakajima, Y., Kawano, Y., Sekigawa, H.: A new algorithm for producing quantum circuits using KAK decompositions. Quantum Inf. Comput. 6, 067–080 (2006)

    MathSciNet  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901-1-4 (2001)

    Article  ADS  Google Scholar 

  36. Ortigosa-Blanch, A., Capmany, J.: Subcarrier multiplexing optical quantum key distribution. Phys. Rev. A 73, 024305-1-4 (2006)

    Article  ADS  Google Scholar 

  37. Peters, N., Altepeter, J., Jeffrey, E., Branning, D., Kwiat, P.: Precise creation, characterization and manipulation of single optical qubits. Quantum Inf. Comput. 3, 503–517 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quantum Inf. Comput. 7, 1–51 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Radulov, G., Quinn, P., Hegt, H., van Roermund, A.: Smart and Flexible Digital-to-Analog Converters. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  40. Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N.K., Zeilinger, A.: Discrete tunable color entanglement. Phys. Rev. Lett. 103, 253601 (2009)

    Article  ADS  Google Scholar 

  41. SaiToh, A., Kitagawa, M.: Numerical analysis of boosting scheme for scalable NMR quantum computation. Phys. Rev. A 71, 022303-1-13 (2005)

    Article  ADS  Google Scholar 

  42. SaiToh, A., Kitagawa, M.: Matrix-product-state simulation of an extended Brüschweiler bulk-ensemble database search. Phys. Rev. A 73, 062332-1-19 (2006)

    Article  ADS  Google Scholar 

  43. SaiToh, A., Rahimi, R., Nakahara, M.: Limitation for linear maps in a class for detection and quantification of bipartite nonclassical correlation. Quantum Inf. Comput. 12, 0944–0952 (2012)

    MathSciNet  Google Scholar 

  44. Schmüser, F., Janzing, D.: Quantum analog-to-digital and digital-to-analog conversion. Phys. Rev. A 72, 042324-1-8 (2005)

    Article  ADS  MATH  Google Scholar 

  45. Schulman, L.J., Vazirani, U.V.: Molecular scale heat engines and scalable quantum computation. In: Proceedings of 31st Annual ACM Symposium on Theory of Computing (STOC99), pp. 322–329. ACM, New York (1999)

  46. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE TCAD 25, 1000–1010 (2006)

    Google Scholar 

  47. Shiryaev, A.N.: Probability, 2nd edn. Springer, New York (1996). Translated by R.P. Boas

  48. Tarasov, V.E.: Quantum computer with mixed states and four-valued logic. J. Phys. A: Math. Gen. 35, 5207–5235 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  49. Tucci, R.R.: A rudimentary quantum compiler (1999). arXiv:quant-ph/9902062

  50. Usmani, I., Afzelius, M., de Riedmatten, H., Gisin, N.: Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun. 1, 12-1-7 (2010)

    Article  ADS  Google Scholar 

  51. Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92, 177902-1-4 (2004)

    Article  ADS  Google Scholar 

  52. Ventura, D., Martinez, T.: Initializing the amplitude distribution of a quantum state. Found. Phys. Lett. 12, 547–559 (1999)

    Article  MathSciNet  Google Scholar 

  53. Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 1–40. Springer, New York (2009, 2014). arXiv:0804.3401

  54. Xiao, L., Jones, J.A.: NMR analogues of the quantum Zeno effect. Phys. Lett. A 359, 424–427 (2006)

    Article  ADS  Google Scholar 

  55. Xiao, L., Long, G.L.: Fetching marked items form an unsorted database in NMR ensemble computing. Phys. Rev. A 66, 052320-1-5 (2002)

    Article  ADS  MATH  Google Scholar 

  56. Zhang, T., Yin, Z.Q., Han, Z.F., Guo, G.C.: A frequency-coded quantum key distribution scheme. Opt. Commun. 281, 4800–4802 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant-in-Aid for Scientific Research from JSPS (Grant No. 25871052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira SaiToh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SaiToh, A. Quantum digital-to-analog conversion algorithm using decoherence. Quantum Inf Process 14, 2729–2748 (2015). https://doi.org/10.1007/s11128-015-1033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1033-x

Keywords

Navigation