Skip to main content
Log in

A novel quantum group signature scheme without using entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel quantum group signature scheme. It can make the signer sign a message on behalf of the group without the help of group manager (the arbitrator), which is different from the previous schemes. In addition, a signature can be verified again when its signer disavows she has ever generated it. We analyze the validity and the security of the proposed signature scheme. Moreover, we discuss the advantages and the disadvantages of the new scheme and the existing ones. The results show that our scheme satisfies all the characteristics of a group signature and has more advantages than the previous ones. Like its classic counterpart, our scheme can be used in many application scenarios, such as e-government and e-business.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaum, D., Heyst, E.: Group signature. In: Advances in Cryptology Eurocrypt’91 LNCS, vol. 547, pp. 257–265. Springer, Berlin (1992)

  2. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Advances in Cryptology-Crypo’97 LNCS, vol. 1296, pp. 410–424. Springer, Berlin (1997)

  3. Bresson, E., Stem, J.: Efficient revocation in group signature. In: Proceedings of PKC’01 LNCS, vol. 1992, pp. 190–206. Springer, Berlin (2001)

  4. Ateniese, G., Camenisch, J., Joye, M.: A practical and provably secure coalition-resistant group signature scheme. In: Advances in Cryptology-Crypto’2000 LNCS, vol. 1880, pp. 255–270. Springer, Berlin (2000)

  5. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Grover, L.: A fast quantum mechanical algorithm for database search. arXiv:quant-ph/9605043v3 (1996)

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers. Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

  8. Ekert, A.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Benett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  10. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283, 5261–5263 (2010)

    Article  ADS  Google Scholar 

  11. Salas, P.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13, 861–869 (2013)

    Google Scholar 

  12. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  13. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pairblock. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Huang, W., Wen, Q.Y., Jia, H.Y., Qin, S.J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 10, 100308 (2012)

    Article  Google Scholar 

  16. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  17. Hao, L., Wang, C., Long, G.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639–3642 (2011)

    Article  ADS  Google Scholar 

  18. Tsai, C., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China. Phys. Mech. Astron. 55, 460–464 (2012)

    Article  ADS  Google Scholar 

  19. Massoud, H., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)

    Article  ADS  Google Scholar 

  20. Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing theory through noisy channel. Quantum Inf. Comput. 12, 253–270 (2012)

    MATH  MathSciNet  Google Scholar 

  21. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  MATH  ADS  Google Scholar 

  22. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  MATH  ADS  Google Scholar 

  23. Liu, F., Qin, S.J., Wen, Q.Y.: A quantum secret sharing protocol with fairness. Phys. Scr. 89, 075104 (2014)

    Article  ADS  Google Scholar 

  24. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Liu, W., Wang, Y., Jiang, Z.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  27. Gottesman, D., Chuang, I.: Quantum digital signature. arXiv.org/abs/quant-ph/0105032 (2001)

  28. Barnum, H., Crpeau. C., Gottesman, D., et al.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science, pp. 449–459. IEEE, Washington (2002)

  29. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  30. Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415–418 (2008)

    Article  ADS  Google Scholar 

  31. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G 51, 1079–1088 (2008)

    Article  MATH  Google Scholar 

  32. Yang, Y., Wang, Y., Teng, Y., et al.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84–88 (2010)

    Article  MATH  ADS  Google Scholar 

  33. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  35. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  36. Choi, J.W., Chang, K.Y., Hong, D.: Security on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  ADS  Google Scholar 

  37. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12, 2655–2669 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Wen, X.J., Tian, Y., Ji, L.P., et al.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)

    Article  ADS  Google Scholar 

  39. Wen, X.J.: Quantum group blind signature scheme without entanglement. Phys. Scr. 82, 065403 (2010)

    Article  Google Scholar 

  40. Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284, 3654–3658 (2011)

    Article  ADS  Google Scholar 

  41. Zhang, K.J., Song, T.T., Zuo, H.J., et al.: A secure quantum signature scheme based on Bell states. Phys. Scr. 87, 045012 (2013)

    Article  ADS  Google Scholar 

  42. Zhang, K.J., Sun, Y., Song, T.T., Zuo, H.J.: Cryptanalysis of the quantum group signature protocols. Int. J. Theor. Phys. 52, 4163–4173 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Boykin, P., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  44. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  45. Zhou, N., Zeng, G.H., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–50 (2001)

    Article  Google Scholar 

  46. Hsuch, C., Chen, C.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference, pp. 236–242. Taipei (2004)

  47. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Yang, Y.G., Zhou, Z., Teng, Y.W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61, 773–778 (2011)

    Article  ADS  Google Scholar 

  51. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  52. Gao, F., Qin, Sj, Wen, Q.Y., et al.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007)

    MATH  MathSciNet  Google Scholar 

  53. Gao, F., Qin, S., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  54. Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum key distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  55. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270, 61201431), Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, GB., Zhang, KJ. A novel quantum group signature scheme without using entangled states. Quantum Inf Process 14, 2577–2587 (2015). https://doi.org/10.1007/s11128-015-0995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0995-z

Keywords

Navigation