Skip to main content
Log in

REE from EOF

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is well known that entanglement of formation (EOF) and relative entropy of entanglement (REE) are exactly identical for all two-qubit pure states even though their definitions are completely different. We think this fact implies that there is a veiled connection between EOF and REE. In this context, we suggest a procedure, which enables us to compute REE from EOF without relying on the converse procedure. It is shown that the procedure yields correct REE for many symmetric mixed states such as Bell-diagonal, generalized Vedral–Plenino, and generalized Horodecki states. It also gives a correct REE for less symmetric Vedral–Plenio-type state. However, it is shown that the procedure does not provide correct REE for arbitrary mixed states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Since REE is defined through another separable state \(\sigma \), it is called “distance entanglement measure”. Another example of the distance entanglement measure is a geometric entanglement measure defined as \(E_g (\psi )= 1-P_{\mathrm{max}}\), where \(P_{\mathrm{max}}\) is a maximal overlap of a given state \(|\psi \rangle \) with the nearest product state [46].

  2. If \(\lambda _3 \le 1/2\), \(\rho _{\mathrm{BD}}\) is a separable state.

  3. If \(\lambda _1 \le 2 \sqrt{\lambda _2 \lambda _3}\), \(\rho _{H}\) becomes a separable state.

References

  1. Bennett, C.H., DiVincenzo, D.P., Smokin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996). [ quant-ph/9604024]

    Article  ADS  MathSciNet  Google Scholar 

  2. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997). [ quant-ph/9702027]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998). [ quant-ph/9707035]

    Article  ADS  Google Scholar 

  4. Shimony, A.: Degree of entanglement. In: Greenberg, D.M., Zeilinger, A. (eds.) Fundamental problems in quantum theory: a conference held in honor of J. A. Wheeler. Ann. N. Y. Acad. Sci. 755, 675 (1995)

  5. Barnum, H., Linden, N.: Monotones and invariants for multi-particle quantum states. J. Phys. A: Math. Gen. 34, 6787 (2001). [ quant-ph/0103155]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and application to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003). [ quant-ph/0307219]

    Article  ADS  Google Scholar 

  7. Uhlmann, A.: Fidelity and concurrence of conjugate states. Phys. Rev. A 62, 032307 (2000). [ quant-ph/9909060]

    Article  ADS  MathSciNet  Google Scholar 

  8. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997). [ quant-ph/9703041]

    Article  ADS  Google Scholar 

  9. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). [ quant-ph/9709029]

    Article  ADS  Google Scholar 

  10. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000). [ quant-ph/9907047]

    Article  ADS  Google Scholar 

  11. Osterloh, A., Siewert, J.: Constructing \(N\)-qubit entanglement monotones from antilinear operators. Phys. Rev. A 72, 012337 (2005). [ quant-ph/0410102]

    Article  ADS  Google Scholar 

  12. Doković, D.Ž., Osterloh, A.: On polynomial invariants of several qubits. J. Math. Phys. 50, 033509 (2009). [ arXiv:0804.1661 (quant-ph)]

    Article  ADS  MathSciNet  Google Scholar 

  13. Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light harvesting complexes. Nat. Phys. 6, 462 (2010). [ arXiv:0905.3787 (quant-ph)] and references therein

    Article  Google Scholar 

  14. Krueger, O., Werner, R.F. : Some open problems in quantum information theory. quant-ph/0504166

  15. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996). [ quant-ph/9607007]

    Article  ADS  MathSciNet  Google Scholar 

  16. Kim, H., Hwang, M.R., Jung, E., Park, D.K.: Difficulties in analytic computation for relative entropy of entanglement. Phys. Rev. A 81, 052325 (2010). [ arXiv:1002.4695 (quant-ph)]

    Article  ADS  Google Scholar 

  17. Park, D.K.: Relative entropy of entanglement for two-qubit state with \(z\)-directional Bloch vectors. Int. J. Quantum Inf. 8, 869 (2010). [ arXiv:1005.4777 (quant-ph)]

    Article  MATH  Google Scholar 

  18. Horodecki, M., Horodecki, P., Horodecki, R.: In: Alber, G., et al. (eds.) Quantum information: an introduction to basic theoretical concepts and experiments. Springer, Berlin, p. 151 (2001)

  19. Miranowicz, A., Ishizaka, S.: Closed formula for the relative entropy of entanglement. Phys. Rev. A78, 032310 (2008). [ arXiv:0805.3134 (quant-ph)]

    Article  ADS  MathSciNet  Google Scholar 

  20. Friedland, S., Gour, G.: Closed formula for the relative entropy of entanglement in all dimensions. J. Math. Phys. 52, 052201 (2011). [ arXiv:1007.4544 (quant-ph)]

    Article  ADS  MathSciNet  Google Scholar 

  21. Girard, M.W., Gour, G., Friedland, S.: On convex optimization problems in quantum information theory. arXiv:1402.0034 (quant-ph)

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0011971). We would like to dedicate this paper to our colleagues Dr. You Hwan Ju and Dr. Soo-Young Lee, who passed away in the near past.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaeKil Park.

Appendix

Appendix

In this section, we will show that REE and EOF are identical for two-qubit pure states. This fact was already proven in Theorem \(3\) of Ref. [3]. We will prove this again more directly, because explicit Schmidt bases are used in the main body of the paper.

Let us consider a general two-qubit pure state \(|\psi _2 \rangle _{AB} = \alpha _1 |00 \rangle + \alpha _2 |01 \rangle + \alpha _3 |10 \rangle + \alpha _4 |11 \rangle \) with \(|\alpha _1|^2 + |\alpha _2|^2 + |\alpha _3|^2 + |\alpha _4|^2 = 1\). Then, its concurrence is \({\mathcal {C}} = 2 |\alpha _1 \alpha _4 - \alpha _2 \alpha _3|\). Now, we define

$$\begin{aligned} x_{\pm } = \frac{\alpha _1^* \alpha _2 + \alpha _3^* \alpha _4}{{\mathcal {N}}_{\pm }} \quad y_{\pm } = \frac{\lambda _{\pm } - (|\alpha _1|^2 + |\alpha _3|^2)}{{\mathcal {N}}_{\pm }} \end{aligned}$$
(7.1)

where

$$\begin{aligned} \lambda _{\pm } = \frac{1}{2} \left[ 1 \pm \sqrt{1 - {\mathcal {C}}^2} \right] \quad {\mathcal {N}}_{\pm }^2 = |\alpha _1^* \alpha _2 + \alpha _3^* \alpha _4|^2 + |\lambda _{\pm } - (|\alpha _1|^2 + |\alpha _3|^2)|^2. \end{aligned}$$
(7.2)

Now, we consider \(2 \times 2\) matrix \(u\), whose components \(u_{ij}\) are

$$\begin{aligned} u_{11}&= \alpha _1 \left( \frac{|x_+|^2}{\sqrt{\lambda _+}} + \frac{|x_-|^2}{\sqrt{\lambda _-}} \right) + \alpha _2 \left( \frac{x_+^* y_+}{\sqrt{\lambda _+}} + \frac{x_-^* y_-}{\sqrt{\lambda _-}} \right) \nonumber \\ u_{12}&= \alpha _1 \left( \frac{x_+ y_+^*}{\sqrt{\lambda _+}} + \frac{x_- y_-^*}{\sqrt{\lambda _-}} \right) + \alpha _2 \left( \frac{|y_+|^2}{\sqrt{\lambda _+}} + \frac{|y_-|^2}{\sqrt{\lambda _-}} \right) \\ \nonumber u_{21}&= \alpha _3 \left( \frac{|x_+|^2}{\sqrt{\lambda _+}} + \frac{|x_-|^2}{\sqrt{\lambda _-}} \right) + \alpha _4 \left( \frac{x_+^* y_+}{\sqrt{\lambda _+}} + \frac{x_-^* y_-}{\sqrt{\lambda _-}} \right) \nonumber \\ u_{22}&= \alpha _3 \left( \frac{x_+ y_+^*}{\sqrt{\lambda _+}} + \frac{x_- y_-^*}{\sqrt{\lambda _-}} \right) + \alpha _4 \left( \frac{|y_+|^2}{\sqrt{\lambda _+}} + \frac{|y_-|^2}{\sqrt{\lambda _-}} \right) . \nonumber \end{aligned}$$
(7.3)

Then, Schmidt bases for each party are defined as

$$\begin{aligned} |i_A \rangle = \sum _{j=0}^1 v_{ji} |j \rangle \quad |i_B \rangle = \sum _{k=0}^1 w_{ik} |k \rangle \quad (i = 0, 1) \end{aligned}$$
(7.4)

where

$$\begin{aligned} v = \left( \begin{array}{c@{\quad }c} u_{11} &{} u_{12} \\ u_{21} &{} u_{22} \end{array} \right) \left( \begin{array}{c@{\quad }c} x_+ &{} x_- \\ y_+ &{} y_- \end{array} \right) \quad w = \left( \begin{array}{c@{\quad }c} x_+^* &{} y_+^* \\ x_-^* &{} y_-^* \end{array} \right) . \end{aligned}$$
(7.5)

Using Eq. (7.4), one can show straightforwardly that \(|\psi _2 \rangle _{AB}\) reduces to \(|\psi _2 \rangle _{AB} = \sqrt{\lambda _+} |0_A 0_B \rangle + \sqrt{\lambda _-} |1_A 1_B \rangle \). Thus, its CSS \(\sigma _*\) are simply expressed in terms of the Schmidt bases as

$$\begin{aligned} \sigma _{*} = \lambda _+ |0_A 0_B \rangle \langle 0_A 0_B | + \lambda _- |1_A 1_B \rangle \langle 1_A 1_B |. \end{aligned}$$
(7.6)

Applying Eq. (1.1), one can show easily \({\mathcal {E}}_R (|\psi _2 \rangle ) = - \lambda _+ \ln \lambda _{+} - \lambda _- \ln \lambda _{-}\), which is exactly the same with EOF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, E., Park, D. REE from EOF. Quantum Inf Process 14, 531–546 (2015). https://doi.org/10.1007/s11128-014-0887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0887-7

Keywords

Navigation