Skip to main content
Log in

Entanglement rebirth of multi-trapped ions with trap phonon modes: entanglement sudden death with recovery

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider a multi-qubit system consisting of two trapped ions coupled in a laser field. The ions are identical three-level electronic systems which interact with one another through the phonon modes of their relative or center of mass motions, and the system is tuned so that two-phonon processes dominate the electronic transitions. The resulting evolution of the system is studied theoretically with a focus on the entanglement properties of the system. A method of quantifying the entanglement is discussed, and the time dependence of these quantifications is determined. The cases of the two ions coupled to the same phonon field and to two different isolated phonon fields are compared for Fock cavity modes. Instances of the entanglement sudden death recovery are identified in these various systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaeger, G.S.: Quantum Information: An Overview. Springer, New York (2006)

    Google Scholar 

  2. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307–115319 (2007)

    Article  ADS  Google Scholar 

  4. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P.H., Davidovic, L.: Environment-induced sudden death of entanglement. Science 316, 579–581 (2007)

    Article  ADS  Google Scholar 

  5. Eberly, J.H., Yu, T.: The end of an entanglement. Science 316, 555–557 (2007)

    Article  Google Scholar 

  6. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404–140408 (2004)

    Article  ADS  Google Scholar 

  7. Gerry, C.C., Knight, P.L.: Introductory Quantum Optics, pp. 255–258. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 282–322 (2003)

    Article  ADS  Google Scholar 

  9. Yonac, M., Yu, T., Eberly, J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B 40, S45–S55 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Audenaert, K., Plenio, M.B., Eisert, J.: Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett. 90, 027901–027905 (2003)

    Article  ADS  Google Scholar 

  14. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  15. Kim, M.S., Lee, J., Ahn, D., Knight, P.L.: Entanglement induced by a single-mode heat environment. Phys. Rev. A 65, 040101–040104(R) (2002)

  16. Ikram, M., Li, F.-L., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments. Phys. Rev. A 75, 062336–062344 (2007)

    Article  ADS  Google Scholar 

  17. Al-Qasimi, A., James, D.F.V.: Sudden death of entanglement at finite temperature. Phys. Rev. A 77, 012117–012120 (2008)

    Article  ADS  Google Scholar 

  18. Cui, W., Xi, Z., Pan, Y.: The entanglement dynamics of the bipartite quantum system: toward entanglement sudden death. J. Phys. A Math. Theor. 42, 025303–025317 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Ficek, Z., Tanas, R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304–024307 (2006)

    Article  ADS  Google Scholar 

  20. Len, J., Sabn, C.: Photon exchange and correlation transfer in atom–atom entanglement dynamics. Phys. Rev. A 79, 012301–012306 (2009)

    Article  ADS  Google Scholar 

  21. Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315–042327 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  22. Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A Math. Gen. 38, 6777–6787 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Abdel-Aty, M., Yu, T.: Entanglement sudden birth of two trapped ions interacting with a time-dependent laser field. J. Phys. B At. Mol. Opt. Phys. 41, 235503–235509 (2008)

  24. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306–052311 (2000)

    Article  ADS  Google Scholar 

  25. Sainz, I., Björk, G.: Entanglement invariant for the double Jaynes–Cummings model. Phys. Rev. A 76, 042313–042323 (2007)

    Article  ADS  Google Scholar 

  26. Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73, 040305–040308(R) (2006)

    Article  ADS  Google Scholar 

  27. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    Article  ADS  Google Scholar 

  28. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  29. Abdel-Aty, M., McGurn, A.R.: Entanglement of three-level trapped ions with phonon trap modes. Phys. Lett. A 373, 2420–2427 (2009)

    Article  ADS  MATH  Google Scholar 

  30. Alsing, P., Zubairy, M.S.: Collapse and revivals in a two-photon absorption. J. Opt. Soc. Am. B 4, 177–187 (1987)

    Article  ADS  Google Scholar 

  31. Li, G.-X., Peng, J.: Influences of ac Stark shifts on coherent population trapping in the atom-field coupling system via Raman two-photon processes. Phys. Rev. A 52, 465–471 (1995)

    Article  ADS  Google Scholar 

  32. Puri, R.R., Bullough, R.K.: Quantum electrodynamics of an atom making two-photon transitions in an ideal cavity. J. Opt. Soc. Am. B 5, 2021–2032 (1988)

  33. Ghosh, B., Majumdar, A.S., Nayak, N.: Control entanglement by the dynamic Stack effect. J. Phys. B 41, 065503–065510 (2008)

    Article  Google Scholar 

  34. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  35. Coman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 05310–052306 (2000)

    Google Scholar 

  36. Tessier, T.E., Deutsch, I.H., Delgado, A.P.: Entanglement sharing in the Tavis–Cummings model. Proc. SPIE 5105, 282–290 (2003)

    Article  ADS  Google Scholar 

  37. Leibfried, D., Meekhof, D.M., King, B.E., Monroe, C., Itano, W.M., Wineland, D.J.: Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281–4285 (1996)

    Article  ADS  Google Scholar 

  38. Turchette, Q.A., et al.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418–063425 (2000)

    Article  ADS  Google Scholar 

  39. Meekhof, D.M., Monroe, C., King, B.E., Itano, W.M., Wineland, D.J.: Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

ARM wishes to thank the Department of Physics and Astronomy at University of California, Riverside, for the use of its library facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. McGurn.

Appendix

Appendix

The matrix elements of \(\rho (t)\) in Eq. (12) are obtained directly from Eq. (11) and are given by:

$$\begin{aligned} B&= \sum _{n=0}^\infty |A_1(n,t)+A_8(n+4,t)|^2, \end{aligned}$$
(17)
$$\begin{aligned} C&= \sum _{n=0}^\infty |A_2(n-2,t)+A_6(n+2,t)|^2, \end{aligned}$$
(18)
$$\begin{aligned} D&= \sum _{n=0}^\infty |A_3(n-2,t)+A_7(n+2,t)|^2, \end{aligned}$$
(19)
$$\begin{aligned} E&= \sum _{n=0}^\infty |A_4(n-4,t)+A_5(n,t)|^2, \end{aligned}$$
(20)
$$\begin{aligned} B_1&= \sum _{n=0}^\infty \left[ A_1(n,t)+A_8(n+4,t)\right] \left[ A_2^*(n-2,t)+A_6^*(n+2,t)\right] \!, \end{aligned}$$
(21)
$$\begin{aligned} B_2&= \sum _{n=0}^\infty \left[ A_1(n,t)+A_8(n+4,t)\right] \left[ A_3^*(n-2,t)+A_7^*(n-2,t)\right] \!, \end{aligned}$$
(22)
$$\begin{aligned} B_3&= \sum _{n=0}^\infty \left[ A_1(n,t)+A_8(n+4,t)\right] \left[ A_4^*(n-4,t)+A_5^*(n,t)\right] \!, \end{aligned}$$
(23)
$$\begin{aligned} C_1&= \sum _{n=0}^\infty [A_2(n-2,t)+A_6(n+2,t)][A_3^*(n-2,t)+A_7^*(n+2,t)], \end{aligned}$$
(24)
$$\begin{aligned} C_2&= \sum _{n=0}^\infty \left[ A_2(n-2,t)+A_6(n+2,t)\right] \left[ A_4^*(n-4,t)+A_5^*(n,t)\right] \!, \end{aligned}$$
(25)
$$\begin{aligned} D_1&= \sum _{n=0}^\infty \left[ A_3(n-2,t)+A_7(n+2,t)\right] \left[ A_4^*(n-4,t)+A_5^*(n,t)\right] \!. \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aty, M., Bouchene, M. & McGurn, A.R. Entanglement rebirth of multi-trapped ions with trap phonon modes: entanglement sudden death with recovery. Quantum Inf Process 13, 1937–1950 (2014). https://doi.org/10.1007/s11128-014-0787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0787-x

Keywords

Navigation