Skip to main content
Log in

Linear dependencies in Weyl–Heisenberg orbits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Five years ago, Lane Hughston showed that some of the symmetric informationally complete positive operator valued measures (SICs) in dimension 3 coincide with the Hesse configuration (a structure well known to algebraic geometers, which arises from the torsion points of a certain elliptic curve). This connection with elliptic curves is signalled by the presence of linear dependencies among the SIC vectors. Here we look for analogous connections between SICs and algebraic geometry by performing computer searches for linear dependencies in higher dimensional SICs. We prove that linear dependencies will always emerge in Weyl–Heisenberg orbits when the fiducial vector lies in a certain subspace of an order 3 unitary matrix. This includes SICs when the dimension is divisible by 3 or equal to 8 mod 9. We examine the linear dependencies in dimension 6 in detail and show that smaller dimensional SICs are contained within this structure, potentially impacting the SIC existence problem. We extend our results to look for linear dependencies in orbits when the fiducial vector lies in an eigenspace of other elements of the Clifford group that are not order 3. Finally, we align our work with recent studies on representations of the Clifford group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zauner, G.: Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie PhD thesis, Univ. Wien (1999); English translation Quantum Designs: Foundations of a Non-commutative Design Theory Int. J. Quant. Inf. 9, 445 (2011)

    Google Scholar 

  2. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Scott, A.J.: Tight informationally complete quantum measurements. J. Phys. A 39, 13507 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Zhu, H., Englert, B.-G.: Quantum state tomography with fully symmetric measurements and product measurements. Phys. Rev. A 84, 022327 (2011)

    Article  ADS  Google Scholar 

  5. Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the quantumness of a set of quantum states. Quantum Inf. Comput. 3, 377 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Oreshkov, O., Calsamiglia, J., Muñoz-Tapia, R., Bagan, E.: Optimal signal states for quantum detectors. New J. Phys. 13, 073032 (2011)

    Article  ADS  Google Scholar 

  7. Englert, B.-G., Kaszlikowski, D., Ng, H.K., Chua, W.K., Řeháček, J., Anders, J.: Efficient and robust quantum key distribution with minimal state tomography arXiv:0412075 (2004)

  8. Durt, T., Kurtsiefer, C., Lamas-Linares, A., Ling, A.: Wigner tomography of two-qubit states and quantum cryptography. Phys. Rev. A 78, 042338 (2008)

    Article  ADS  Google Scholar 

  9. Howard, S.D., Calderbank, A.R., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Signal Process. 2006, 85865 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hermann, M.A., Strohmer, T.: High-resolution Radar via compressed sensing. IEEE Trans. Signal Process. 57, 2275 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15, 488 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Scott, A.J., Grassl, M.: SICs: a new computer study. J. Math. Phys. 51, 042203 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  13. Appleby, D.M., Bengtsson, I., Brierley, S., Grassl, M., Gross, D., Larsson, J.-Å.: The monomial representations of the Clifford group. Quantum Inf. Comput. 12, 0404 (2012)

    MathSciNet  Google Scholar 

  14. Appleby, D.M., Bengtsson, I., Brierley, S. Ericsson, Å., Grassl, M., Larsson, J.-Å.: Systems of Imprimitivity for the Clifford, Group arXiv:1210.1055 (2012)

  15. Zhu, H.: SIC-POVMs and Clifford groups in prime dimensions. J. Phys. A: Math. Theor. 43, 305305 (2010)

    Article  Google Scholar 

  16. Fuchs, C.A., Schack, R. (2009). Quantum-Bayesian Coherence arXiv:0906.2187v1

  17. Appleby, D.M.: SIC-POVMs and the extended Clifford group. J. Math. Phys. 46, 052107 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  18. Appleby, D.M., Yadsan-Appleby, H., Zauner, G.: Galois Automorphisms of a Symmetric, Measurement arXiv:1209.1813 (2012)

  19. Mumford, D.: Tata Lectures on Theta, vols. I, II, and III, Birkhaüser (1983, 1984, 1991)

  20. Hughston, L.: d=3 SIC-POVMs and Elliptic Curves, Perimeter Institute, Seminar Talk, available online at http://pirsa.org/07100040/ (2007)

  21. Pfander, G.E.: Gabor frames in finite dimensions. In: Casazza, P.G., Kutyniok, G. (eds.) Finite Frames: Theory and Applications. Birkhäser, Boston (2013)

    Google Scholar 

  22. Lawrence, J., Pfander, G.E., Walnut, D.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11, 715 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Malikiosis, R.-D.: A note on Gabor frames in finite dimensions arXiv:1304.7709 (2013)

  24. Flammia, S.: On SIC-POVMs in prime dimensions. J. Phys. A 39, 13483 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Hesse, O.: Über die Wendepuncte der Curven dritter Ordnung. J. Reine Angew. Math. 28, 97 (1844)

    Article  MATH  MathSciNet  Google Scholar 

  26. Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. L’Enseignement Math. 55, 235 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. NY 176, 1 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  28. Bengtsson, I.: From SICs and MUBs to Eddington. J. Phys. Conf. Ser. 254, 012007 (2010)

    Article  ADS  Google Scholar 

  29. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26, 350 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Blanchfield, K.: Mutually unbiased bases, Weyl–Heisenberg orbits and the distance between them. AIP Conf. Proc. 1508, 359 (2012)

    Article  ADS  Google Scholar 

  31. Grassl, M.: Private Communication

  32. Rose, H.E.: A Course in Number Theory. Oxford University Press, Oxford (1994)

  33. Appleby, D.M.: Properties of the Extended Clifford Group with Applications to SIC-POVMs and MUBs arXiv:0909.5233 (2009)

Download references

Acknowledgments

IB and KB thank Markus Grassl for taking an interest in this problem when we visited Singapore, and especially for drawing our attention to the linear dependencies in the “odd” SIC in eight dimensions. We also thank a referee for constructive comments. HBD was supported by the Natural Sciences and Engineering Research Council of Canada and by the U.S. Office of Naval Research (Grant No. N00014-09-1-0247). IB was supported by the Swedish Research Council under contract VR 621-2010-4060. DMA was supported in part by the U.S. Office of Naval Research (Grant No. N00014-09-1-0247) and by the John Templeton Foundation. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Blanchfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, H.B., Blanchfield, K., Bengtsson, I. et al. Linear dependencies in Weyl–Heisenberg orbits. Quantum Inf Process 12, 3449–3475 (2013). https://doi.org/10.1007/s11128-013-0609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0609-6

Keywords

Navigation