Skip to main content
Log in

Characterizing Gaussian Flows Arising from Itô’s Stochastic Differential Equations

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In order to identify which of the strong solutions of Itô’s stochastic differential equations (SDEs) are Gaussian, we introduce a class of diffusions which ‘depend deterministically on the initial condition’ and then characterize the class. This characterization allows us to show, using the Monotonicity inequality, that the transpose of the flows generated by the SDEs, for an extended class of initial conditions, are the unique solutions of the class of stochastic partial differential equations introduced in Rajeev and Thangavelu (Potential Anal. 28(2), 139–162 2008), ‘Probabilistic Representations of Solutions of the Forward Equations’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Bargen, H., Dimitroff, G.: Isotropic Ornstein-Uhlenbeck flows. Stoch. Process Appl. 119(7), 2166–2197 (2009). doi:10.1016/j.spa.2008.10.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Baxendale, P., Harris, T.E.: Isotropic stochastic flows. Ann. Probab. 14(4), 1155–1179 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhar, S., Rajeev, B.: Differential operators on Hermite Sobolev spaces. Proc. Indian Acad. Sci. Math. Sci 125(1), 113–125 (2015). doi:10.1007/s12044-015-0220-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Bismut, J.M.: A generalized formula of Itô and some other properties of stochastic flows. Z. Wahrsch. Verw. Gebiete 55(3), 331–350 (1981). doi:10.1007/BF00532124

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogachev, V., Da Prato, G., Röckner, M.: Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces. J. Evol. Equ. 10(3), 487–509 (2010). doi:10.1007/s00028-010-0058-y

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogachev, V., Prato, G.D., Röckner, M.: Uniqueness for solutions of Fokker-Planck equations on infinite dimensional spaces. Comm. Partial Diff. Equ. 36 (6), 925–939 (2011). doi:10.1080/03605302.2010.539657

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogachev, V.I., Da Prato, G., Röckner, M.: Fokker-Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces. J. Funct. Anal. 256(4), 1269–1298 (2009). doi:10.1016/j.jfa.2008.05.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Borkar, V.S.: Evolution of interacting particles in a Brownian medium. Stochastics 14(1), 33–79 (1984). doi:10.1080/17442508408833331

    Article  MathSciNet  MATH  Google Scholar 

  9. Carverhill, A.: Flows of stochastic dynamical systems: Ergodic theory. Stochastics 14(4), 273–317 (1985). doi:10.1080/17442508508833343

    Article  MathSciNet  MATH  Google Scholar 

  10. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Encyclopedia of Mathematics and its Applications. 2nd edn., vol. 152. Cambridge University Press, Cambridge (2014), 10.1017/CBO9781107295513

  11. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989). doi:10.1007/BF01393835

    Article  MathSciNet  MATH  Google Scholar 

  12. Russo, F., Vallois, P.: Elements of stochastic calculus via regularization. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds.) Séminaire de Probabilités XL. Lecture Notes in Mathematics, vol. 1899, pp 147–185. Springer, Berlin (2007)

  13. Elworthy, K.D.: Stochastic dynamical systems and their flows. In: Stochastic analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978), pp 79–95. Academic Press, New York-London (1978)

  14. Gawarecki, L., Mandrekar, V., Rajeev, B.: Linear stochastic differential equations in the dual of a multi-Hilbertian space. Theory Stoch. Process 14(2), 28–34 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Gawarecki, L., Mandrekar, V., Rajeev, B.: The monotonicity inequality for linear stochastic partial differential equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12(4), 575–591 (2009). doi:10.1142/S0219025709003902

    Article  MathSciNet  MATH  Google Scholar 

  16. Hida, T.: Brownian motion. In: Applications of Mathematics. Translated from the Japanese by the author and T. P. Speed, vol. 11. Springer-Verlag, New York (1980)

  17. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  18. Ikeda, N., Watanabe, S.: Stochastic flows of diffeomorphisms. In: Stochastic analysis and applications, Adv. Probab. Related Topics, vol. 7, pp 179–198. Dekker, New York (1984)

  19. Itō, K.: Foundations of stochastic differential equations in infinite-dimensional spaces. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 47. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1984)

  20. Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 2nd edn., vol. 288. Springer-Verlag, Berlin (2003)

  21. Krylov, N.V., Rozovskiı̆, B.L.: Stochastic evolution equations. In: Current Problems in mathematics, vol. 14 (Russian), pp. 71–147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1979)

  22. Kunita, H.: Stochastic differential equations and stochastic flows of diffeomorphisms. In: École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math, vol. 1097, pp 143–303. Springer, Berlin (1984), 10.1007/BFb0099433

  23. Kunita, H.: Stochastic differential equations and stochastic flows of homeomorphisms. In: Stochastic Analysis and applications, Adv. Probab. Related Topics, vol. 7, pp 269–291. Dekker, New York (1984)

  24. Kunita, H.: Stochastic flows and stochastic differential equations. In: Cambridge Studies in Advanced Mathematics. Reprint of the 1990 original, vol. 24. Cambridge University Press, Cambridge (1997)

  25. Malliavin, P.: Géométrie différentielle stochastique. In: Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics]. Notes prepared by Danièle Dehen and Dominique Michel, vol. 64. Presses de l’Université de Montréal, Montreal, Que (1978)

  26. Meyer, P.A.: Flot d’une équation différentielle stochastique (d’après Malliavin, Bismut, Kunita). In: Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math, vol. 850, pp 103–117. Springer, Berlin-New York (1981)

  27. Protter, P.E.: Stochastic integration and differential equations. In: Applications of Mathematics (New York). Stochastic Modelling and Applied Probability. 2nd edn., vol. 21. Springer-Verlag, Berlin (2004)

  28. Rajeev, B.: Translation invariant diffusion in the space of tempered distributions. Indian J. Pure Appl. Math. 44(2), 231–258 (2013). doi:10.1007/s13226-013-0012-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Rajeev, B., Thangavelu, S.: Probabilistic representations of solutions of the forward equations. Potential Anal. 28(2), 139–162 (2008). doi:10.1007/s11118-007-9074-0

    Article  MathSciNet  MATH  Google Scholar 

  30. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 3rd edn., vol. 293. Springer-Verlag, Berlin (1999)

  31. Rozovskiı̆, B.L.: Stochastic evolution systems. In: Mathematics and its Applications (Soviet Series). Linear theory and applications to nonlinear filtering, Translated from the Russian by A. Yarkho, vol. 35. Kluwer Academic Publishers Group, Dordrecht (1990), 10.1007/978-94-011-3830-7

  32. Stroock, D.W.: Lectures on topics in stochastic differential equations. In: Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay. With notes by Satyajit Karmakar, vol. 68. Springer-Verlag, Berlin-New York (1982)

  33. Watanabe, S.: Stochastic flows of diffeomorphisms. In: Probability Theory and Mathematical Statistics (Tbilisi, 1982), Lecture Notes in Math., vol. 1021, pp 699–708. Springer, Berlin (1983), 10.1007/BFb0072966

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprio Bhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhar, S. Characterizing Gaussian Flows Arising from Itô’s Stochastic Differential Equations. Potential Anal 46, 261–277 (2017). https://doi.org/10.1007/s11118-016-9578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9578-6

Keywords

Mathematics Subject Classification (2010)

Navigation