Skip to main content

Advertisement

Log in

Sharp Subcritical and Critical Trudinger-Moser Inequalities on \(\mathbb {R}^{2}\) and their Extremal Functions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study on \(\mathbb {R}^{2}\) some new types of the sharp subcritical and critical Trudinger-Moser inequality that have close connections to the study of the optimizers for the classical Trudinger-Moser inequalities. For instance, one of our results can be read as follows: Let 0 ≤ β < 2, p ≥ 0, α ≥ 0. Then

$$\sup_{\left\Vert \nabla u\right\Vert_{2}^{2}+\left\Vert u\right\Vert_{2} ^{2}\leq1}\left\Vert u\right\Vert_{2}^{p}{\int}_{\mathbb{R}^{2}}\exp\left( \alpha\left( 1-\frac{\beta}{2}\right) \left\vert u\right\vert^{2}\right) \left\vert u\right\vert^{2}\frac{dx}{\left\vert x\right\vert^{\beta}}<\infty $$

if and only if α < 4π or α = 4π, p ≥ 2. The attainability and inattainability of these sharp inequalties will be also investigated using a new approach, namely the relations between the supremums of the sharp subcritical and critical ones. This new method will enable us to compute explicitly the supremums of the subcritical Trudinger-Moser inequalities in some special cases. Also, a version of Concentration-compactness principle in the spirit of Lions ( Lions, I. Rev. Mat. Iberoam. 1(1) 145–01 1985) will also be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Trudinger type inequalities in \(\mathbb {R}^{N}\) and their best exponents. Proc. Amer. Math. Soc. 128, 2051–2057 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. (2) 128(2), 385–398 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adimurthi; Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. Partial Differ. Equat. 29(1-2), 295–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adimurthi; Yang, Y.: An interpolation of Hardy inequality and Trudinger-Moser inequality in \(\mathbb {R}^{N}\) and its applications. Int. Math. Res. Not IMRN 13, 2394–2426 (2010)

    MATH  Google Scholar 

  5. Beckner, W.: Estimates on Moser embedding. Potential Anal. 20(4), 34–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb {R}^{2}\). Comm. Partial Differ. Equat. 17(3-4), 407–435 (1992)

    Article  MathSciNet  Google Scholar 

  8. Carleson, L., Chang, S.Y.A.: On the existence of an extremal function for an inequality of. J. Moser. Bull. Sci. Math. (2) 110(2), 113–127 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Cassani, D., Sani, F., Tarsi, C.: Equivalent Moser type inequalities in \( \mathbb {R}^{2}\) and the zero mass case. J. Funct. Anal. 267(11), 4236–4263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs. Ann. Mat. Pura Appl. (4) 192 (2), 225–243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohn, W.S., Lu, G.: Best constants for Moser-Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50(4), 1567–1591 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohn, W.S., Lu, G.: Sharp constants for Moser-Trudinger inequalities on spheres in complex space \(\mathbb {C}^{n}\). Comm. Pure Appl. Math. 57(11), 1458–1493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, M., Lu, G.: Best constants and existence of maximizers for weighted Moser-Trudinger inequalities. arXiv:1504.04847

  14. Druet, O.: Multibumps analysis in dimension 2: quantification of blow-up levels. Duke Math. J. 132(2), 217–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Figueiredo, D.G., Do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Comm. Pure Appl. Math. 55(2), 135–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Comment. Math. Helv. 67(3), 471–497 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Trudinger-moser inequality on the whole plane with the exact growth condition. J. Eur. Math. Soc. (JEMS) 17(4), 819–835 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ishiwata, M.: nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \(\mathbb {R}^{N}\). Math Existence Ann. 351(4), 781–804 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ishiwata, M., Nakamura, M., Wadade, H.: On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form. Ann. I. H. Poincaré-AN 31, 297–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lam, N., Lu, G.: Sharp Adams type inequalities in Sobolev spaces \(W^{m,\frac {n}{m}}\left (\mathbb {R}^{n}\right )\) for arbitrary integer m. J. Differ. Equat. 253, 1143–1171 (2012)

    Article  Google Scholar 

  21. Lam, N., Lu, G.: Sharp singular Adams inequalities in high order Sobolev spaces. Methods Appl. Anal. 19(3), 243–266 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Lam, N., Lu, G.: Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math. 231(6), 3259–3287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lam, N., Lu, G.: A new approach to sharp Trudinger-Moser and Adams type inequalities: a rearrangement-free argument. J. Differ. Equat. 255(3), 298–325 (2013)

    Article  MATH  Google Scholar 

  24. Lam, N., Lu, G., Zhang, L.: Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities. arXiv:1504.04858

  25. Lam, N., Lu, G., Zhang, L.: Existence and nonexistence of extremal functions for sharp Trudinger-Moser inequalities. Preprint 2015

  26. Li, Y.X.: Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differ. Equat. 14(2), 163–192 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Li, Y.X.: Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A 48(5), 618–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y.X., Ruf, B.: Sharp Moser-Trudinger type inequality for unbounded domains in \(\mathbb {R}^{N}\). Indiana Univ. Math. J. 57(1), 451–480 (2008)

    Article  MATH  Google Scholar 

  29. Lieb, E.H., Loss, M.: Analysis, 2nd edn., p xxii+346. Graduate Studies in Mathematics. 14. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  30. Lin, K.: Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc. 7, 2663–2671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1(1), 145–01 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, G., Tang, H.: Sharp Moser-Trudinger inequalities on hyperbolic spaces with the exact growth condition. J. Geom. Anal. 26(2), 837-857 (2016)

  33. Lu, G., Yang, Y.: Adams’ inequalities for bi-Laplacian and extremal functions in dimension four. Adv. Math. 220, 1135–1170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Masmoudi, N., Sani, F.: Trudinger-moser inequalities with the exact growth condition in \(\mathbb {R}^{N}\) and applications. Comm. Partial Differ. Equat. 40(8), 1408–1440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20(1970/71), 1077–1092

  36. Do Ó, J.M.: N−Laplacian equations in \(\mathbb {R}^{N}\) with critical growth. Abstr. Appl. Anal. 2(3-4), 301–315 (1997)

    Article  MathSciNet  Google Scholar 

  37. Pohožaev, S.I.: On the eigenfunctions of the equation Δu + f(u)=0. (Russian) Dokl .Akad. Nauk SSSR 165, 36–39 (1965)

    Google Scholar 

  38. Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in \(\mathbb {R}^{2}\). J. Funct. Anal. 219(2), 340–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ruf, B., Sani, F.: Sharp Adams-type inequalities in \(\mathbb {R}^{N}\). Trans. Amer. Math. Soc. 365(2), 645–670 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tarsi, C.: Adams’ inequality and limiting sobolev embeddings into zygmund spaces. Potential Anal. 37(4), 353–385 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  42. Judovič, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. (Russian) Dokl. Akad. Nauk SSSR 138, 805-808 (1961)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Lam.

Additional information

Research of this work was partly supported by an AMS-Simons Travel Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, N. Sharp Subcritical and Critical Trudinger-Moser Inequalities on \(\mathbb {R}^{2}\) and their Extremal Functions. Potential Anal 46, 75–103 (2017). https://doi.org/10.1007/s11118-016-9572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9572-z

Keywords

Mathematics Subject Classfication (2010)

Navigation