Skip to main content
Log in

Martingale Transforms and the Hardy-Littlewood-Sobolev Inequality for Semigroups

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We give a representation of the fractional integral for symmetric Markovian semigroups as the projection of martingale transforms and prove the Hardy-Littlewood-Sobolev (HLS) inequality based on this representation. The proof rests on a new inequality for the fractional Littlewood-Paley g–function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D., Bañuelos, R.: Probabilistic approach to fractional integrals and the Hardy-Littlewood-Sobolev inequality. Analytic methods in interdisciplinary applications. Springer Proc. Math. Stat. 116, 17–40 (2015)

    Article  Google Scholar 

  2. Bañuelos, R.: Martingale transforms and related singular integrals. Trans. Amer. Math. Soc. 293(2), 547–563 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bañuelos, R., Méndez-Hernández, P.J.: Space-time Brownian motion and the Beurling-Ahlfors transform. Indiana Univ. Math. J. 52(4), 981–990 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bañuelos, R.: The foundational inequalities of D. L. Burkholder and some of their ramifications. Illinois J. Math. 54(3), 789–868 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bañuelos, R., Osȩkowski, A.: Sharp martingale inequalities and applications to Riesz transforms on manifolds, Lie groups and Gauss space. J. Funct. Anal. 269(6), 1652–1713 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bochner, S.: Harmonic analysis and the theory of probability dover (2012)

  7. Burkholder, D.L.: Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12, 647–702 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlen, E.A., Loss, M.: Extremals of functionals with competing symmetries. J. Funct. Anal. 88, 437–456 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davies, E.B.: Heat kernels and spectral theory. Cambridge University Press (1990)

  10. Frank, R.L., Lieb, E.H.: A new, rearrangement-free proof of the Sharp Hardy-Littlewood-Sobolev Inequality. Spectral Theory, Function Spaces and Inequalities. Oper. Theory Adv. Appl. 219, 55–67 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Frank, R.L., Lieb, E.H.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. 176, 349–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geiss, S., Montgomery-Smith, S., Saksman, E.: On singular integral and martingale transforms. Trans. Amer. Math. Soc. 362(2), 553–575 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gundy, R.F.: Some Topics in Probability and Analysis. Amer. Math Soc, vol. 70. Providence, Rhode Island (1986)

  14. Gundy, R.F., Silverstein, M.L.: On a probabilistic interpretation for the Riesz transforms. Functional Analysis in Markov Processes (Katata/Kyoto, 1981), vol. 923, p 199203. Lecture Notes in Mathematics, Springer, Berlin (1982)

  15. Gundy, R.F., Varopoulos, N.T.: Les transformations de Riesz et les intégrales stochastiques. CR Acad. Sci. Paris Sér. A-B 289(1), A13–A16 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals (1). Math. Zeitschr. 27, 565–606 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hardy, G.H., Littlewood, J.E.: On certain inequalities connected with the calculus of variations. J. London Math. Soc. 5, 34–39 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hedberg, L.I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (2), 505–510 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X.D.: Martingale transforms and L p-norm estimates of Riesz transforms on complete Riemannian manifolds: . Probab. Theory Related Fields 141, 247–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meyer, P.A.: Démonstrations probabilistes des inégalités de Littlewood-Paley. Seminaire de Probability, XV., Lecture Notes in Mathematics, vol. 1059, p 179193. Springer, Berlin (1976)

  22. Osȩkowski, A.: Sharp martingale and semimartingale inequalities. Springer (2012)

  23. Osȩkowski, A.: Sharp logarithmic inequalities for Riesz transforms. J. Funct. Anal. 263, 89–108 (2012)

    Article  MathSciNet  Google Scholar 

  24. Rota, G.C.: An “alternierende verfahren” for general positive operators. Bull. Amer. Math. Soc. 68(2), 95–102 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shigekawa, I.: Littlewood-paley inequality for a diffusion satisfying the logarithmic Sobolev inequality and for the Brownian motion on a Riemannian manifold with boundary. Osaka J. Math. 39, 897–930 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Sobolev, S.L.: On a theorem of functional analysis. Mat. Sbornik 4, 471–497 (1938)

    Google Scholar 

  27. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton University Press (1970)

  28. Stein, E.M.: Topics in harmonic analysis related to the Littlewood-Paley theory. Princeton University Press (1970)

  29. Varopoulos, N.: Hardy-littlewood theory for semigroups. J. Funct. Anal. 63(2), 240–260 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Varopoulos, N.: Aspects of probabilistic Littlewood-Paley theory. J. Funct. Anal. 38(1), 25–60 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Varopoulos, N. T. h., Saloff-Coste, L., Coulhon, A.T.: Analysis and geometry on groups. Cambridge University Press (1993)

  32. Volberg, A., Nazarov, F.: Heating of the Ahlfors–Beurling operator and estimates of its norm. St. Petersburg Math. J. 15(4), 563–573 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yosida, K.: Functional analysis. Spring-Verlag, New York/Berlin (1980)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daesung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D. Martingale Transforms and the Hardy-Littlewood-Sobolev Inequality for Semigroups. Potential Anal 45, 795–807 (2016). https://doi.org/10.1007/s11118-016-9571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9571-0

Keywords

Mathematics Subject Classfication (2010)

Navigation