Skip to main content

Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality

  • Conference paper
  • First Online:
Analytic Methods in Interdisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 116))

Abstract

We give a short summary of some of Varopoulos’ Hardy-Littlewood-Sobolev inequalities for self-adjoint \(C_{0}\) semigroups and give a new probabilistic representation of the classical fractional integral operators on \(\mathbb {R}^n\) as projections of martingale transforms. Using this formula we derive a new proof of the classical Hardy-Littlewood-Sobolev inequality based on Burkholder-Gundy and Doob’s inequalities for martingales.

Bañuelos is supported in part by NSF Grant # 0603701-DMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Applebaum, R. Bañuelos, Martingale transform and Lévy processes on Lie groups. Indiana Univ. Math. J. 63, 1109–1138 (2014)

    Google Scholar 

  2. R. Bañuelos, The foundational inequalities of D. L. Burkholder and some of their ramifications. Illinois J. Math. 54, 789–868 (2010)

    MATH  MathSciNet  Google Scholar 

  3. R. Bañuelos, F. Baudoin, Martingale transforms and their projection operators on manifolds. Potential Anal. 38, 1071–1089 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Bañuelos, A. Osȩkowski, Sharp Martingale Inequalities and Applications to Riesz Transforms on Manifolds, Lie Groups and Gauss Space, preprint (2013)

    Google Scholar 

  5. A. Borichev, P. Janakiraman, A. Volberg, Subordination by orthogonal martingales in \(L^{p}\) and zeros of Laguerre polynomials, arXiv:1012.0943

  6. S. Geiss, S. Mongomery-Smith, E. Saksman, On singular integral and martingale transforms. Trans. Am. Math. Soc. 362, 555–575 (2010)

    Google Scholar 

  7. A. Osȩkowski, Sharp logarithmic inequalities for Riesz transforms. J. Funct. Anal. 263, 89–108 (2012)

    Article  MathSciNet  Google Scholar 

  8. N.T. Varopoulos, Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63, 240–260 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, New Jersey, 1970)

    MATH  Google Scholar 

  10. E.M. Stein, On the maximal ergodic theorem. Proc. Natl. Acad. Sci. 47, 1894–1897 (1961)

    Article  MATH  Google Scholar 

  11. R. Bañuelos, P.J. Méndez-Hernandez, Space-time Brownian motion and the Beurling-Ahlfors transform. Indiana Univ. Math. J. 52(4), 981–990 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. N.T. Varopoulos, Aspects of probabilistic Littlewood-Paley theory. J. Funct. Anal. 38, 25–60 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. R.F. Gundy, N.T. Varopoulos, Les transformations de Riesz et les intégrales stochastiques. C. R. Acad. Sci. Paris Sér. I. Math. 289, A13–A16 (1979)

    Google Scholar 

  14. E.B. Davies, Heat Kernels and Spectral Theory (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  15. A. Grigor’yan, A. Telcs, Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40, 1212–1284 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. N.T. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups (Cambridge University Press, Coulhon, 1992)

    Google Scholar 

  17. M. Cowling, S. Meda, Harmonic analysis and ultracontractivity. Trans. Am. Math. Soc. 340, 733–752 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. L.I. Hedberg, On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505–510 (1972)

    Article  MathSciNet  Google Scholar 

  19. L. Saloff-Coste, Aspects of Sobolev-Type Inequalities (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  20. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  21. R.L.Schilling, R. Song, Z. Vondraček, Bernstein Functions, Theory and Applications, Studies in Mathematics 37, De Gruyter (2010)

    Google Scholar 

  22. R.M. Blumenthal, R.K. Getoor, Some theorems on stable processes. Trans. Am. Math. Soc. 65, 263–273 (1960)

    Article  MathSciNet  Google Scholar 

  23. A. Grigor’yan, J. Hu, K.-S. Lau, Estimates of heat kernels for non-local regular Dirichlet forms, to appear in Trans. Am. Math. Soc.

    Google Scholar 

  24. P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  25. R.L. Bishop, R.J. Crittenden, Geometry on Manifolds (Academic Press, New York, 1964)

    Google Scholar 

  26. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter (1994)

    Google Scholar 

  27. P. Auscher, T. Coulhon, X.T. Duong, S. Hofmann, Riesz transforms on manifolds and heat kernel regularity. Ann. Scient. Éc. Norm. Sup. 37, 911–957 (2004)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

David Applebaum would like to thank both the London Mathematical Society and Purdue University for the financial support which enabled this project to get off the ground during the summer of 2012. Both authors would like to thank Krzysztof Bogdan for inviting them to the 6th international conference on stochastic analysis at Bȩdlewo in September 2012 where we able to make much progress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Bañuelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Applebaum, D., Bañuelos, R. (2015). Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality. In: Mityushev, V., Ruzhansky, M. (eds) Analytic Methods in Interdisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-12148-2_2

Download citation

Publish with us

Policies and ethics