Skip to main content
Log in

On Riesz Decomposition for Super-Polyharmonic Functions in \({\mathbb R}^{n}\)

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

The classical Riesz Decomposition Theorem is a powerful tool describing superharmonic functions on compact subsets of \({\mathbb R}^{n}\). There is also the global version of this result dealing with functions superharmonic in \({\mathbb R}^{n}\) and satisfying an additional condition. Recently, a generalization of this result for superbiharmonic functions in \({\mathbb R}^{n}\) was obtained by (J. Anal. Math. 60, 113–133 2006). We consider its further generalization for m-superharmonic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armitage, D.H., Gardiner, S.J.: Classical Potential theory. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London (2001)

    Book  Google Scholar 

  2. Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic functions. Notes taken by Eberhard Gerlach. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1983)

    Google Scholar 

  3. Brauchart, J.S., Dragnev, P.D., Saff, E.B.: Riesz extremal measures on the sphere for axis-supported external fields. J. Math. Anal. Appl. 356(2), 769–792 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Futamura, T., Kitaura, K., Mizuta, Y.: A Montel type result for super-polyharmonic functions on R N. Potential Anal. 34(1), 89–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hayman, W.K., Kennedy, P.B.: Subharmonic functions. Vol. I. London Mathematical Society Monographs, No. 9. Academic Press, London-New York (1976)

    Google Scholar 

  6. Hayman, W.K., Korenblum, B.: Representation and uniqueness theorems for polyharmonic functions. J. Anal. Math. 60, 113–133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hörmander, L.: Notions of convexity. Progress in Mathematics, 127. Birkhäuser Boston, Inc., Boston (1994)

    Google Scholar 

  8. Kitaura, K., Mizuta, Y.: Spherical means and Riesz decomposition for superbiharmonic functions. J. Math. Soc. Jpn. 58(2), 521–533 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Landkof, N.S.: Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg (1972)

    Google Scholar 

  10. Mizuta, Y.: Potential theory in Euclidean spaces. GAKUTO International Series. Mathematical Sciences and Applications, 6. Gakktosho Co., Ltd., Tokyo (1996)

    Google Scholar 

  11. Ransford, T.: Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  12. Volchkov, V.V.: Integral geometry and convolution equations. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Tovstolis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovstolis, A.V. On Riesz Decomposition for Super-Polyharmonic Functions in \({\mathbb R}^{n}\) . Potential Anal 43, 341–360 (2015). https://doi.org/10.1007/s11118-015-9474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9474-5

Keywords

Mathematics Subject Classification (2010)

Navigation