Skip to main content
Log in

More on the Potential for the Farthest-Point Distance Function

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

For some particular cases in dimension 3 and higher we prove a conjecture of Laugesen and Pritsker (Canad. Math. Bull., 46, pp. 373–387, 2003) concerning the probability measure related with the farthest-point distance function. In dimension 2 we offer an alternative proof for the result by Gardiner and Netuka. We also consider some examples that may provide more insight in the nature of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anzelotti, G.: Pairings between measures and functions and compensated compactness. Ann. Mat. Pura. Appl. 135, 293–318 (1983)

    Article  MathSciNet  Google Scholar 

  2. Armitage, D.H., Gardiner, S.J.: Classical potential theory, Springer Monographs in Mathematics. Springer , London (2001). Ltd., London

    Book  Google Scholar 

  3. Blaschke, W.: Einige Bemerkungen über Kurven und Flächen von konstanter Breite. Ber. Verh. Sächs. Akad. Leipzig 67, 290–297 (1915)

    Google Scholar 

  4. Boyd, D.W: Sharp inequalities for the product of polynomials. Bull. London Math. Soc. 26, 449–454 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Gruber, P. M., Wills, J. M. (eds.) Convexity and its Applications, Birkhäuser, Basel, pp. 4–96 (1983)

  6. Chen, G.-Q., Frid, H.: On the theory of divergence-measure fields and its applications. Bol. Soc. Brasil. Mat. 32, 401–433 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gardiner, S.J., Netuka, I.: Potential theory of the farthest point distance function. J. d’Analyse Math. 101, 163–177 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gardiner, S.J., Netuka, I.: The Farthest Point Distance Function. In: Complex and Harmonic Analysis, Carberym, A. et al. (Eds), DEStech Publications Inc., Lancaster, Pennsylvania, USA pp. 35–43 (2007)

  9. Hernández Cifre, M.A., Salinas, G., Gomis, S.S.: Two optimization problems for convex bodies in the n-dimensional space. Beiträge Algebra Geom. 45, 549–555 (2004)

    MATH  Google Scholar 

  10. Kawohl, B.: Convex sets of constant width. Oberwolfach Rep. 6, 390–393 (2009)

    Google Scholar 

  11. Kawohl, B., Weber, C.: Meissner’s mysterious bodies. Math. Intelligencer 33, 94–101 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Laugesen, R., Pritsker, I.E.: Potential Theory of the Farthest-Point Distance Function. Canad. Math. Bull. 46, 373–387 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pritsker, I.E.: Products of polynomials in uniform norms. Trans. Amer. Math. Soc. 353, 3971–3993 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pritsker, I.E., Saff, E.B., Wise, W.: Reverse triangle inequalities for Riesz potentials and connections with polarization. J. Math. Anal. Appl. 410, 868–881 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rockafellar, R.T.: Convex analysis, Princeton Mathematical . No. 28 . Princeton University Press, Princeton (1970)

  16. Schneider, R.: Convex bodies: the Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  17. Wise, W.: Potential theory and geometry of the farthest distance function. Potential Anal. 39, 341–353 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wise, W.: Potential Theory of the farthest distance function, PhD Thesis. Oklahoma State University, Stillwater OK (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Sweers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawohl, B., Nitsch, C. & Sweers, G. More on the Potential for the Farthest-Point Distance Function. Potential Anal 42, 699–716 (2015). https://doi.org/10.1007/s11118-014-9454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9454-1

Keywords

Mathematics Subject Classification (2010)

Navigation