Skip to main content
Log in

Higher-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization with nonsolid ordering cones

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

In this paper, we consider higher-order Karush–Kuhn–Tucker optimality conditions in terms of radial derivatives for set-valued optimization with nonsolid ordering cones. First, we develop sum rules and chain rules in the form of equality for radial derivatives. Then, we investigate set-valued optimization including mixed constraints with both ordering cones in the objective and constraint spaces having possibly empty interior. We obtain necessary conditions for quasi-relative efficient solutions and sufficient conditions for Pareto efficient solutions. For the special case of weak efficient solutions, we receive even necessary and sufficient conditions. Our results are new or improve recent existing ones in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, N.L.H.: Higher-order optimality conditions for set-valued optimization with ordering cones having empty interior using variational sets. Positivity 20, 41–60 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anh, N.L.H., Khanh, P.Q.: Higher-order optimality conditions in set-valued optimization using radial sets and radial derivatives. J. Glob. Optim. 56, 519–536 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anh, N.L.H., Khanh, P.Q.: Higher-order optimality conditions for proper efficiency in nonsmooth vector optimization using radial sets and radial derivatives. J. Glob. Optim. 58, 693–709 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Variational sets: calculus rules and applications to nonsmooth vector optimization. Nonlinear Anal. TMA 74, 2358–2379 (2011)

    Article  MATH  Google Scholar 

  5. Anh, N.L.H., Khanh, P.Q., Tung, L.T.: Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Anal. TMA 74, 7365–7379 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  7. Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditiond. Math. Progr. 122, 301–347 (2010)

    Article  MATH  Google Scholar 

  8. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi relative interiors and duality theory. Math. Progr. 57, 15–48 (1992)

    Article  MATH  Google Scholar 

  9. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part II: explicit lattice models. Math. Progr. 57, 49–83 (1992)

    Article  MATH  Google Scholar 

  10. Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61, 35–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boţ, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasi-relative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, C.R., Li, S.J., Teo, K.L.: Higher-order weak epiderivatives and applications to duality and optimality conditions. Comp. Math. Appl. 57, 1389–1399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Crespi, G.P., Ginchev, I., Rocca, M.: First-order optimality conditions in set-valued optimization. Math. Methods Oper. Res. 63, 87–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Araujo, A.P., Monteiro, P.K.: On programming when the positive cone has an empty interior. J. Optim. Theory Appl. 67, 395–410 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durea, M.: Optimality conditions for weak and firm efficiency in set-valued optimization. J. Math. Anal. Appl. 344, 1018–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Durea, M., Dutta, J., Tammer, C.: Lagrange multipliers for \(\epsilon \)-Pareto solutions in vector optimization with nonsolid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dutta, J.: Strong KKT, second order conditions and nonsolid cones in vector optimization. In: Ansari, Q.H., Yao, J.C. (eds.) Recent Advances in Vector Optimization, pp. 127–167. Springer, Berlin (2012)

    Chapter  Google Scholar 

  19. Gong, X.-H.: Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior. J. Math. Anal. Appl. 307, 12–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gong, X.-H., Dong, H.B., Wang, S.Y.: Optimality conditions for proper efficient solutions of vector set-valued optimization. J. Math. Anal. Appl. 284, 332–350 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ha, T.X.D.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Pardalos, P., Rassis, ThM, Khan, A.A. (eds.) Nonlinear Analysis and Variational Problems, pp. 305–324. Springer, Berlin (2009)

    Google Scholar 

  22. Ha, T.X.D.: Optimality conditions for various efficient solutions involving coderivatives: from set-valued optimization problems to set-valued equilibrium problems. Nonlinear Anal. TMA 75, 1305–1323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jahn, J.: Vector Optimization: Theory, Application and Extensions. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  24. Jahn, J., Khan, A.A.: Generalized contingent epiderivatives in set valued optimization: optimality conditions. Numer. Funct. Anal. Optim. 23, 807–831 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khan, A.A., Tammer, C., Zǎlinescu, C.: Set-valued Optimization: An Introduction with Applications. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  26. Khanh, P.Q., Tuan, N.D.: Variational sets of multivalued mappings and a unified study of optimality conditions. J. Optim. Theory Appl. 139, 45–67 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Khanh, P.Q., Tuan, N.D.: Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization. J. Optim. Theory Appl. 139, 243–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, S.J., Chen, C.R.: Higher-order optimality conditions for Henig efficient solutions in set-valued optimization. J. Math. Anal. Appl. 323, 1184–1200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, S.J., Meng, K.W., Penot, J.-P.: Calculus rules for derivatives of multimaps. Set-Valued Anal. 17, 21–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, S.J., Teo, K.L., Yang, X.Q.: Higher-order Mond–Weir duality for set-valued optimization. J. Comput. Appl. Math. 217, 339–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, S.J., Teo, K.L., Yang, X.Q.: Higher-order optimality conditions for set-valued optimization. J. Optim. Theory Appl. 137, 533–553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Limber, M., Goodrich, R.K.: Quasi interiors, Lagrange multipliers, and \(L^p\) spectral estimation with lattice bounds. J. Optim. Theory Appl. 78, 143–161 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Luu, D.V.: Higher-order necessary and sufficient conditions for strict local Pareto minima in terms of Studniarski’s derivatives. Optimization 57, 593–605 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mordukhovich, B.S.: Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183, 250–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. I: Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  36. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vol. II: Applications. Springer, Berlin, (2006)

  37. Mordukhovich, B.S.: Multiobjective optimization problems with equilibrium constraints. Math. Progr. 117, 331–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  39. Wang, Q.L., Li, S.J.: Higher-order weakly generalized adjacent epiderivatives and applications to duality of set-valued optimization. J. Inequal. Appl. 2009, 462637 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, Y., Liu, S.: Benson proper efficiency in the nearly cone-subconvexlike vector optimization with set-valued functions. Appl. Math. J. Chin. Univ. Ser. B 18, 95–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, Z.A., Yang, X.M.: Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relative interior. J. Optim. Theory Appl. 150, 327–340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Vietnam National University-Hochiminh City under grant number B2015-28-03. The authors are grateful to the editor and an anonymous referee for their valuable comments and remarks which have helped them to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Le Hoang Anh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Hoang Anh, N., Khanh, P.Q. Higher-order Karush–Kuhn–Tucker optimality conditions for set-valued optimization with nonsolid ordering cones. Positivity 21, 931–953 (2017). https://doi.org/10.1007/s11117-016-0444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-016-0444-y

Keywords

Mathematics Subject Classification

Navigation