Skip to main content
Log in

A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a \({\overline{\gamma}}\)-strongly monotone and L-Lipschitzian continuous operator with \({\overline{\gamma} >0 }\) and L > 0. Take \({\mu, \gamma \in \mathbb R}\) as follows:

$${0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma}-\frac{L^2 \mu}{2}}{k}.}$$

In this paper, under the assumption \({(A+B)^{-1}0 \cap F^{-1}0 \neq \emptyset}\), we prove a strong convergence theorem for finding a point \({z_0\in (A+B)^{-1}0\cap F^{-1}0}\) which is a unique solution of the hierarchical variational inequality

$${\langle (V-\gamma g)z_0, q-z_0 \rangle \geq 0, \quad \forall q\in (A+B)^{-1}0 \cap F^{-1}0.}$$

Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoyama K., Kimura Y., Takahashi W.: Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 15, 395–409 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Aoyama K., Kimura Y., Takahashi W., Toyoda M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aoyama K., Kimura Y., Takahashi W., Toyoda M.: On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 8, 471–489 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Blum E., Oettli W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Browder F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 100, 201–225 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. Browder F.E., Petryshyn W.V.: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 20, 197–228 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Combettes P.L., Hirstoaga S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Eshita K., Takahashi W.: Approximating zero points of accretive operators in general anach spaces. JP J. Fixed Point Theory Appl. 2, 105–116 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Halpern B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MATH  Google Scholar 

  10. Liu Y.: A general iterative method for equilibrium problems and strict pseudo-contractions in Hilbert spaces. Nonlinear Appl. 71, 4852–4861 (2009)

    Article  MATH  Google Scholar 

  11. Marino G., Xu H.-K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marino G., Xu H.-K: Weak and strong convergence theorems for strich pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moudafi A.: Viscosity approximation methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moudafi A.: Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear Convex Anal. 9, 37–43 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Nadezhkina N., Takahashi W.: Strong convergence theorem by hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rockafellar R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    MathSciNet  MATH  Google Scholar 

  17. Takahashi S., Takahashi W.: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025–1033 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Takahashi S., Takahashi W., Toyoda M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Takahashi W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  20. Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000) (Japanese)

  21. Takahashi W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)

    MATH  Google Scholar 

  22. Takahashi, W.: Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications (to appear)

  23. Takahashi W., Toyoda M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tian M.: A general iterative algorithm for nonexpansive mappings in Hilbert spaces. Nonlinear Anal. 73, 689–694 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wittmann R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu H.K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou H.: Convergence theorems of fixed points fot k-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69, 456–462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Jiu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, LJ., Takahashi, W. A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications. Positivity 16, 429–453 (2012). https://doi.org/10.1007/s11117-012-0161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-012-0161-0

Keywords

Mathematics Subject Classification (2000)

Navigation