Skip to main content
Log in

Over-Expression of PmHSP17.9 in Transgenic Arabidopsis thaliana Confers Thermotolerance

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed  Google Scholar 

  • Charng Y, Liu H, Liu N, Hsu F, Ko S (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P (2012) The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ 35:1912–1931

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930

    Article  CAS  Google Scholar 

  • Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61:453–462

    Article  CAS  PubMed  Google Scholar 

  • Haq NU, Ammar M, Bano A, Luthe DS, Heckathorn SA, Shakeel SN (2013) Molecular characterization of Chenopodium album chloroplast small heat shock protein and its expression in response to different abiotic stresses. Plant Mol Biol Rep 31:1230–1241

    Article  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hong SW, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci U S A 97:4392–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of DELTA1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F (2009) A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant Cell Environ 32:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  CAS  PubMed  Google Scholar 

  • Koo HJ, Xia X, Hong CB (2003) Genes and expression pattern of tobacco mitochondrial small heat shock protein under high-temperature stress. J Plant Biol 46:204–210

    Article  CAS  Google Scholar 

  • Lee U, Wie C, Escobar M, Williams B, Hong SW, Vierling E (2005) Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell 17:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E (2007) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49:115–127

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig E (1988) The heat shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Matas MA, Nunez P, Soto A, Allona I, Casado R, Collada C, Guevara MA, Argoncillo C, Gomez L (2004) Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiol 134:1708–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv WT, Lin B, Zhang M, Hua XJ (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y (2004) Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breeding 13:165–175

    Article  CAS  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Software distributed by the author 14

    Google Scholar 

  • Pandey A, Saini S, Khatoon R, Sharma D, Narayan G, Chowdhuri D (2015) Overexpression of hsp27 rescued neuronal cell death and reduction in life- and health-span in Drosophila melanogaster against prolonged exposure to Dichlorvos. Mol Neurobiol. doi:10.1007/s12035-015-9221-3

  • Prieto-Dapena P, Castano R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142:1102–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperon 6:225–237

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  CAS  PubMed  Google Scholar 

  • Sun JH, Chen JY, Kuang JF, Chen WX, Lu WJ (2010) Expression of sHSP genes as affected by heat shock and cold acclimation in relation to chilling tolerance in plum fruit. Postharvest Biol Tec 55:91–96

    Article  CAS  Google Scholar 

  • Sun L, Liu Y, Kong X, Zhang D, Pan J, Zhou Y, Wang L, Li D, Yang X (2012) ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134:1100–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Yu X, Mao Y, Liu Y, Liu G, Liu Y, Niu X (2015) Overexpression of a small heat‐shock‐protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134:384–393

    Article  CAS  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD (2011) Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ 34:1488–1506

    Article  CAS  PubMed  Google Scholar 

  • Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Xin H, Zhang H, Chen L, Li X, Lian Q, Yuan X, Hu X, Cao L, He X, Yi M (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep 29:875–885

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Peng R, Xiong A, Li X, Zha D, Yao Q (2010) Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. Biol Plantarum 54:105–111

    Article  CAS  Google Scholar 

  • Zhang L, Gao Y, Pan H, Hu W, Zhang Q (2013) Cloning and characterisation of a Primula heat shock protein gene, PfHSP17.1, which confers heat, salt and drought tolerance in transgenic Arabidopsis thaliana. Acta Physiol Plant 35:3191–3200

    Article  CAS  Google Scholar 

  • Zhang J, Chen H, Wang H, Li B, Yi Y, Kong F, Liu J, Zhang H (2015) Constitutive expression of a tomato small heat shock protein gene LeHSP21 improves tolerance to high-temperature stress by enhancing antioxidation capacity in tobacco. Plant Mol Biol Rep doi:10.1007/s11105-015-0925-3

  • Zhao C, Shono M, Sun A, Yi S, Li M, Liu J (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. J Plant Physiol 164:835–841

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Chen H, Chu P, Li Y, Tan B, Ding Y, Tsang EWT, Jiang L, Wu K, Huang S (2012) NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis. Plant Cell Rep 31:379–389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National 863 Project of China (No. 2011AA100207) and the National Natural Science Foundation of China (No. 31270739). We thank all the colleagues in our laboratory for constructive discussion and technical support.

Authors’ Contributions

WXL performed the experiments and wrote the manuscript; YJ, LXB and ZQ helped perform the experiments; GC helped design the experiment; ZJW and BMZ designed the experiments and reviewed the manuscript. All authors have read and approved the final manuscript and have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Wei Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, XL., Yang, J., Li, XB. et al. Over-Expression of PmHSP17.9 in Transgenic Arabidopsis thaliana Confers Thermotolerance. Plant Mol Biol Rep 34, 899–908 (2016). https://doi.org/10.1007/s11105-016-0974-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-0974-2

Keywords

Navigation