Skip to main content
Log in

DNA-Based Identification of Valeriana officinalis s.l.: a Multiplexed Amplification Refractory Mutation System (MARMS) and High Resolution Melting Curve Analysis (HRMA)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The wide distribution of Valeriana officinalis as a herbal remedy as well as the considerably higher concentration of putative mutagenic valepotriate metabolites in other drug-delivering valerian species like Valeriana procera Kunth and Valeriana jatamansi Jones ex Roxb. illustrate the necessity of secure authentication of roots of Valeriana officinalis s.l., especially as the morphologically similar roots of the acutely toxic Veratrum album can be mistaken for those of Valeriana officinalis. We developed two DNA-based systems, a multiplex amplification refractory mutation system (MARMS), and a high-resolution melting curve analysis (HRMA) assay, both based on a sequence mutation within the atpB-rbcL region. With both methods, identification of Valeriana officinalis s.l. was possible. With the HRMA, the characteristic melting curve of 33 samples of Valeriana officinalis s.l. and of two commercial samples of Valerianae radix was distinct from the melting curves of all other Valeriana species (60 accessions), and from the closely related genera Centranthus and Valerianella. Since adulteration of Valeriana with toxic Veratrum species was reported previously, Veratrum primers were included in a multiplex PCR-HRM analysis. This system allowed the detection of a Veratrum admixture down to the level of 0.01 %. Although the advantages, in terms of sensitivity, specificity and practicality of the HRM for analysis of degraded plant material were superior to the MARMS assay, both methods are suitable for routine analysis. The results demonstrated the general ability of HRMA to detect specific (toxic) adulterations in drugs in a semiquantitative way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bell CD (2004) Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. Mol Phylogenet Evol 31:340–350

    Article  CAS  PubMed  Google Scholar 

  • Bell CD, Kutschker A, Arroyo MTK (2012) Phylogeny and diversification of Valerianaceae (Dipsacales) in the southern Andes. Mol Phylogenet Evol 63:724–737

    Article  PubMed  Google Scholar 

  • Berger F (1960) Handbuch der Drogenkunde. Issue 5, Maudrich, Wien, pp 490–507

  • Bos R, Woerdenbag HJ, Hendriks H, Zwaving JH, De Smet P, Tittel G et al (1996) Analytical aspects of phytotherapeutic valerian preparations. Phytochem Anal 7:143–151

    Article  CAS  Google Scholar 

  • Doyle J (1991) DNA protocols for plants. In: Hewitt G, Johnston A, Young J (eds) Molecular techniques in taxonomy. Springer, Berlin, pp 283–285

    Chapter  Google Scholar 

  • European Pharmacopoeia 7th edition (7. 8) (2013); http://online.pheur.org. Accessed 9 September 2013

  • Fischer MA, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein und Südtirol, 3rd edn, Biologiezentrum der Oberösterr. Landesmuseen, Linz

  • Frohne D, Pfänder HJ (2004) Giftpflanzen, 5th edn. Wissenschaftliche Vertragsgesellschaft, Stuttgart, pp 265–268

    Google Scholar 

  • Hänsel R, Keller K, Rimpler H, Schneider G (1994) Drogen P-Z. In: Hagers Handbuch der Drogenkunde, Springer, Berlin, pp 1079–1095

  • Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23:504–511

    CAS  PubMed  Google Scholar 

  • Heuberger H, Heubl G, Müller M, Seefelder S, Seidenberger R (2012) Relationships and ploidy levels of selected accessions as initial genetic material for breeding of medicinal valerian (Valeriana officinalis L. s.l.). Z Arznei-Gewurzpfla 17:28–37

    Google Scholar 

  • Heubl G (2010) New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med 76:1963–1974

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo O, Garnatje T, Susanna A, Methez J (2004) Phylogeny of Valerianaceae based on matK and ITS markers, with reference to matK individual polymorphism. Ann Bot 93:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofinger BJ, Jing HC, Hammond-Kosack KE, Kanyuka K (2009) High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theor Appl Genet 119:851–865

    Article  CAS  PubMed  Google Scholar 

  • Mader E, Lukas B, Novak J (2008) A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 9:69–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Mader E, Ruzicka J, Schmiderer C, Novak J (2011) Quantitative high-resolution melting analysis for detecting adulterations. Anal Biochem 409(1):153–155

    Article  CAS  PubMed  Google Scholar 

  • Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A et al (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76:393–398

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Franz CM, Novak S (1998) Essential oils of Rhizomes and Rootlets of Valeriana celtica L. ssp. norica Vierh. from Austria. J Essent Oil Res 10(6):637–640

    Article  CAS  Google Scholar 

  • Novak J, Novak S, Bitsch C, Franz CM (2000) Essential oil composition of underground parts of Valeriana celtica ssp. from Austria and Italy. Flavour Fragr J 15(1):40–42

    Article  CAS  Google Scholar 

  • Palhares RM, Gonçalves Drummond M, Dos Santos Alves Figueiredo Brasil B, Pereira Cosenza G, Das Graças Lins Brandão M, Oliveira G (2015) Medicinal plants recommended by the World Health Organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS ONE 10(5), e0127866

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders GC, Dukes J, Parkes HC, Cornatt JH (2001) Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses. Clin Chem 47(1):47–55

    CAS  PubMed  Google Scholar 

  • Savolainen V, Manien JF, Douzery E, Spichiger R (1993) Molecular phylogeny of families related to Celastrales based on rbcL 5’flanking sequences. Mol Phylogenet Evol 3(1):27–37

    Article  Google Scholar 

  • Schier W, Schulze W (1989) Aktuelle Verfälschungen von Arzneidrogen – Baldrianwurzel, Enzianwurzel und Nieswurzelstock (Adulterations of drugs. Valerian and gentian roots and sneezewood). Deut Apothekerzeitung 129:1540–1542

    CAS  Google Scholar 

  • Slanc P, Ravnikar M, Štrukelj B (2006) Identification of individual herbal drugs in tea mixtures using restriction analysis of ITS DNA and real-time PCR. Pharmazie 61:912–915

    CAS  PubMed  Google Scholar 

  • Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17(2):145–170

    Article  CAS  Google Scholar 

  • Sucher NJ, Carles MC (2008) Genome-based approaches to the authentication of medicinal plants. Planta Med 74:603–623

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Vossen RHA, Aten E, Roos A, Den Dunnen JT (2009) High-Resolution Melting Analysis (HRMA)—more than just sequence variant screening. Hum Mutat 30(6):860–866

    Article  CAS  PubMed  Google Scholar 

  • Wu SB, Tavassolian I, Rabiei G, Hunt P, Wirthenson M, Gibson JP et al (2009) Mapping SNP-anchored genes using high-resolution melting analysis in almond. Mol Genet Genomics 282:273–281

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhai Y, Liu T, Zhang F, Ji Y (2011) Detection of Valeriana jatamansi as an adulterant of medicinal Paris by length variation of chloroplast psbA-trnH region. Planta Med 77:87–91

    Article  CAS  PubMed  Google Scholar 

  • Yip PY, Chau CF, Mak CY, Kwan HS (2007) DNA methods for identification of Chinese medicinal materials. Chin Med 2:9. doi:10.1186/1749-8546-2-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been carried out with financial support from Aboca (Sansepolcro, Italy) and FP7 grant No. 245199 (Plantlibra), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Ruzicka.

Ethics declarations

Funding

This study has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 245199 (Plantlibra). This report does not necessarily reflect the Commission’s views or its future policy in this area.

Conflict of Interest

The corresponding author has received research grants from Aboca (Sansepolcro, Italy).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzicka, J., Schmiderer, C. & Novak, J. DNA-Based Identification of Valeriana officinalis s.l.: a Multiplexed Amplification Refractory Mutation System (MARMS) and High Resolution Melting Curve Analysis (HRMA). Plant Mol Biol Rep 34, 909–922 (2016). https://doi.org/10.1007/s11105-015-0967-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0967-6

Keywords

Navigation