Skip to main content
Log in

Overexpression of a Common Wheat Gene GALACTINOL SYNTHASE3 Enhances Tolerance to Zinc in Arabidopsis and Rice Through the Modulation of Reactive Oxygen Species Production

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Galactinol synthase (GolS, EC 2.4.1.123), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), plays roles in plant growth and developmental processes. The in vitro roles of GolS in plant responses against heavy metal stress are not well clarified. In the present study, a suppression-subtractive hybridization (SSH) cDNA library has been constructed using RNA extracted from wheat cultivar Jinan 18 treated with ZnCl2 as the tester and RNA from untreated seedlings as the driver. Sixteen expressed sequence tags (ESTs) highly homologous with known proteins associated with stress tolerance have been obtained. Among these, a 1000-bp cDNA sequence encoding GolS protein has been isolated and designated as TaGolS3. Real-time quantitative PCR (qPCR) analysis revealed that TaGolS3 was mainly expressed in young roots and upregulated by exogenous ABA treatment and several abiotic stresses, such as ZnCl2, CuCl2, low temperature, and NaCl. Subcellular localization analysis showed that TaGolS3 protein is a nuclear-localized protein. A detailed analysis of Arabidopsis and rice transgenic plants overexpressing TaGolS3 gene displayed that transgenic plants exhibited increased lateral root number, primary root length, plant survival rate, and plant height. Moreover, in comparison with the wild-type (WT) plants, the TaGolS3-overexpressing lines showed a higher expression of ROS-scavenging genes, activities of antioxidative enzymes, proline contents, and a lower level of malondialdehyde (MDA) contents and electrolyte leakage under zinc stress. These results confirmed the positive roles of TaGolS3 in improving plant tolerance to heavy metal stress, indicating a potential resource in the transgenic breeding to enhance heavy metal stress tolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 5:363–372

    Article  Google Scholar 

  • Azooz MM, Youssef MM, Al-Omair MA (2011) Comparative evaluation of zinc and lead and their synergistic effects on growth and some physiological responses of Hassawi Okra (Hibiscus esculentus) seedlings. Am J Plant Physiol l6:269–282

    Article  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cvikrová M, Gemperlová L, Dobrá J, Martincová Q, Prásil IT, Gubis J, Vanková R (2012) Effect of heat stress on polyamine metabolism in proline-overproducing tobacco plants. Plant Sci 182:49–58

    Article  PubMed  Google Scholar 

  • Downie B, Gurusinghe S, Dahal P, Thacker RR, Snyder JC, Nonogaki H, Yim K, Fukanaga K, Alvarado V, Bradford KJ (2003) Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol 131:1347–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang JJ, Ma WY, Zhao XQ, He X, Li B, Tong YP, Li ZS (2012) Lower canopy temperature is associated with higher cytokinin concentration in the flag leaf of wheat. Crop Sci 52:2743–2756

    Article  CAS  Google Scholar 

  • Grill E, Himmelbach A (1998) ABA signal transduction. Curr Opin Plant Biol 5:412–418

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 20:3901–3907

    Google Scholar 

  • Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, Jing RL, Zhang C, Ma YZ, Gao LF, Gao C, Spannagl M, Mayer KFX, Li D, Pan SK, Zheng FY, Hu Q, Xia XC, Li JW, Liang QS, Chen J, Wicker T, Gou CY, Kuang HH, He GY, Luo YD, Keller B, Xia QJ, Lu P, Wang JY, Zou HF, Zhang RZ, Xu JY, Gao JL, Middleton C, Quan ZW, Liu GM, Wang J, Consortium IWGS, Yang HM, He ZH, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Keller F, Pharr DM (1996) Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, New York, pp 115–184

    Google Scholar 

  • Kim JH, Hossain AM, Kim N, Lee DH, Lee H (2011) Identification and functional characterization of the GALACTINOL SYNTHASE (MoGolS1) gene in Melissa officinalis plants. J Appl Biol Chem 54:244–251

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yu B, Gao Y, Dai A, Bai J (2010) Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. J Plant Physiol 168:927–934

    Article  Google Scholar 

  • Li X, Zhuo JJ, Jing Y, Liu X, Wang XF (2011a) Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development. J Plant Physiol 168:1761–1770

    Article  CAS  PubMed  Google Scholar 

  • Li XP, Zhao XQ, He X, Zhao GY, Liu DC, Zhang AM, Zhang XY, Tong YP, Li ZS (2011b) Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use-and yield-related traits in bread wheat. New Phytol 189:449–458

    Article  CAS  PubMed  Google Scholar 

  • Li YZ, Zhang L, Wang XL, Zhang W, Hao LL, Chu XQ, Guo XQ (2013) Cotton GhMPK6a negatively regulates osmotic tolerance and bacterial infection in transgenic Nicotiana benthamiana, and plays a pivotal role in development. FEBS J 280:5128–5144

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Wu HJ, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YP, An XL, Dong ZY, Zhang KP, Zhang XQ, Luo MC, Dvorak J, Tong YP, Wang J, Yang HM, Li ZS, Wang DW, Zhang AM, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−DeltaDeltaC(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol 136:3148–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol 133:901–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterbauer T, Mucha J, Mach L, Richter A (2002) Chain elongation of raffinose in pea seeds. Isolation, characterization, and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. J Biol Chem 277:194–200

    Article  CAS  PubMed  Google Scholar 

  • Peters S, Keller F (2009) Frost tolerance in excised leaves of the common bugle (Ajuga reptans L.) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs). Plant Cell Environ 32:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscose (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:594–597

    Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Sprenger N, Keller F (2000) Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J 21:249–258

    Article  CAS  PubMed  Google Scholar 

  • Sun ZB, Qi XY, Wang ZL, Li PH, Wu CX, Zhang H, Zhao YX (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol Biochem 69:82–89

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Unda F, Canam T, Preston L, Mansfield SD (2012) Isolation and characterization of galactinol synthases from hybrid poplar. J Exp Bot 63:2059–2069

    Article  CAS  PubMed  Google Scholar 

  • Wang DH, Yao W, Song Y, Liu WC, Wang ZZ (2012) Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza. J Plant Physiol 169:1838–1848

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Wang Z, Chai TY, Wen ZS, Zhang HM (2008) Indian mustard aquaporin improves drought and heavy-metal resistance in tobacco. Mol Biotechnol 40:280–292

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li YZ, Lu WJ, Meng F, Wu CA, Guo XQ (2012) Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot 63:3935–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao TY, Meeley RB, Downie B (2003) Aberrant processing of a maize GALACTINOL SYNTHASE transcript is caused by heat stress. Plant Sci 165:245–256

    Article  CAS  Google Scholar 

  • Zhao T, Martin D, Meeley RB, Downie B (2004) Expression of the maize GALACTINOL SYNTHASE gene family: (II) kernel abscission, environmental stress and myo-inositol influences accumulation of transcript in developing seeds and callus cells. Physiol Plant 121:647–655

    Article  CAS  Google Scholar 

  • Zhou T, Zhang R, Guo SD (2012) Molecular cloning and characterization of GhGolS1, a novel gene encoding galactionol synthase from cotton (Gossypium hirsutum). Plant Mol Biol Report 30:699–709

    Article  CAS  Google Scholar 

  • Zhuo CL, Wang T, Lu SY, Zhao YQ, Li XG, Guo ZF (2013) A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant 149:67–78

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project of Modern Seed Industry Enterprise Science and Technology Development of Shandong (SDKJ2012QF003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Xin.

Additional information

Yuange Wang and Huaihua Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOCX 20 kb)

Supplementary Table S2

(DOCX 18 kb)

Supplementary Table S3

(DOCX 21 kb)

Supplementary Fig. S1

The nucleotide sequence and the deduced amino acid sequence of TaGolS3. (PPTX 76 kb)

Supplementary Fig. S2

Phylogenetic tree analysis between TaGolS3 and GolS protein sequences from other plant species. The multiple alignments were performed by clustalX 2.0 and the phylogenetic tree was constructed with Mega 4.0 using NJ method. The GenBank accession numbers or locus name of selected GolSs are listed as follows: Arabidopsis thaliana: AtGolS1, NP_182240.1; AtGolS2, NP_176053; AtGolS3, NP_172406.1; AtGolS4, NP_176250.1; AtGolS5, NP_197768.1; AtGolS6, NP_567741.2; AtGolS7, NP_176248.1; AtGolS10, NP_850902. Glycine max: GmGolS, AAM96867. Zea mays: ZmGolS1, NP_001105748; ZmGolS2, XP_008654184.1; ZmGolS3, ACG39512.1. Brachypodium distachyon: BdGolS, XP_003559767.1. Gossypium hirsutum: GhGolS, AFG26331.1. Sorghum bicolor: SbGolS, XP_002467954.1. Oryza sativa: OsGolS1, NP_001060697.1; OsGolS2, NP_001049939.1. Hordeum vulgare: HvGolS, AK248482. Triticum aestivum: TaGolS1, BAF51565.1; TaGolS2, BAF51566.1; TaGolS4, Traes_2AS_7339C00EB.1; TaGolS5, Traes_2BS_BC7099C57.1; TaGolS6, Traes_2BS_E69390845.1; TaGolS7, Traes_2BL_1F96D8DB3.1; TaGolS8, Traes_4AS_AF7143BFC1.1. Populus trichocarpa: PtGolS1, ACA04027.1; PtGolS2, ACA04030.1; PtGolS3, ACA04032.1; PtGolS4, XP_002301531. (PPTX 53 kb)

Supplementary Fig. S3

Histochemical assay of GUS gene expression under the control of the TaGolS3 promoter in transgenic Arabidopsis plants. a Hypocotyl, b 2-day-old seedling, c 5-day-old seedling, d rosette leaf, e and f flowers, i silique. Arrow indicates the root tip. Bar: 1 mm. (PPTX 315 kb)

Supplementary Fig. S4

Analysis of H2O2 accumulation in WT and transgenic plants under zinc stress. Seedlings in Fig. 6b were used to examine the H2O2 levels in leaves. Brown color indicates production of hygrogen peroxide. (PPTX 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, H., Wang, S. et al. Overexpression of a Common Wheat Gene GALACTINOL SYNTHASE3 Enhances Tolerance to Zinc in Arabidopsis and Rice Through the Modulation of Reactive Oxygen Species Production. Plant Mol Biol Rep 34, 794–806 (2016). https://doi.org/10.1007/s11105-015-0964-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0964-9

Keywords

Navigation