Skip to main content

Advertisement

Log in

High Genetic Diversity and Population Differentiation in the Critically Endangered Plant Species Trailliaedoxa gracilis (Rubiaceae)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Trailliaedoxa gracilis W. W. Smith et Forrest (Rubiaceae), a Chinese endemic monotypic genus belonging to the Alberteae (Rubiaceae), exhibits a narrow distribution in the dry valleys of the Jinsha River and Red River drainage area in southwestern China. The few sites at which T. gracilis occurs are fragmented and isolated, and several are highly vulnerable to human disturbance. As T. gracilis is a protected plant with a second-degree national priority, the genetic diversity and structure of the populations of this species should be investigated to determine the most suitable conservation strategy. In this study, two chloroplast regions and one nuclear region were used to investigate the genetic diversity, genetic structure, and demographic history of T. gracilis. We observed a high total genetic diversity (H T = 0.952 and 0.966) and low average within-population diversity (H S = 0.07 and 0.489) based on cpDNA and nDNA analyses. Thus, a strong genetic structure (F ST = 0.98049 and 0.59731) was detected. A phylogeographic structure was detected by nuclear DNA analysis (N ST > G ST, P < 0.05); however, the chloroplast data did not show a significant phylogeographic structure (N ST < G ST, P > 0.05). The Bayesian skyline plot and isolation with migration analysis were used to estimate the demographic history of T. gracilis. The results indicated that a marked bottleneck effect occurred during the glacial-interglacial of the Pleistocene. Among the extant populations of T. gracilis, the population found in ChunJiang, LuQuan, and YuXi showed the highest haplotype diversity based on cpDNA sequences and should be given priority for protection. According to the nDNA analysis, every population presented a high level of diversity and a high content of private haplotypes. Therefore, every population should be protected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avise JC, Hamrick JL (1996) Conservation genetics, case histories from nature. Chapman & Hall, New York

    Google Scholar 

  • Chiang TY, Chiang YC, Chen Y, Chou CH, Havanond S, Hong T, Huang S (2001) Phylogeography of Kandelia candel in East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondrial DNAs. Mol Ecol 10:2697–2710

    Article  CAS  PubMed  Google Scholar 

  • Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122

    CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle J (1991) DNA protocols for plants—CTAB total DNA isolation. Molecular techniques in taxonomy. Springer, Berlin

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:1–8. doi:10.1186/1471-2148-7-214

    Article  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Echt CS, DeVerno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa. Ait Mol Ecol 7:307–316

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    CAS  Google Scholar 

  • Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gong X, Luan SS, Hung KH, Hwang CC, Lin CJ, Chiang YC, Chiang TY (2011) Population structure of Nouelia insignis (Asteraceae), an endangered species in southwestern China, based on chloroplast DNA sequences: recent demographic shrinking. J Plant Res 124:221–230

    Article  PubMed  Google Scholar 

  • Graur D, Li WH (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Guan ZT, Zhou L (1996) Cycads of China. Sichuan Science and Technology Press, Chengdu

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. 95–98

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Harpending H (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Harrison S, Yu G, Takahara H, Prentice I (2001) Palaeovegetation (communications arising): diversity of temperate plants in East Asia. Nature 413:129–130

    Article  CAS  PubMed  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci 104:2785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hijmans R, Cruz M, Rojas E, Guarino L (2001) DIVA-GIS version 1.4: a geographic information system for the analysis of biodiversity data, manual

  • Huang S, Chiang YC, Schaal BA, Chou CH, Chiang TY (2001) Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan. Mol Ecol 10:2669–2681

    Article  CAS  PubMed  Google Scholar 

  • Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol 23:1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Wu H, Wang JF, Gong X (2014) Genetic diversity and structure of Munronia delavayi Franch. (Meliaceae), an endemic species in the dry-hot valley of Jinsha River, south-western China. Genet Resour Crop Evol 61:1381–1395

    Article  Google Scholar 

  • Jin ZZ (1998) Study on the floristic elements of seed plant in the dry-warm valleys of Yunnan and Sichuan. Guihaia 18:313–321

    Google Scholar 

  • Jin ZZ (1999) The floristic study on seed plants in the dry-hot valleys in Yunnan and Sichuan. Guihaia 19:1–14

    CAS  Google Scholar 

  • Jin ZZ (2002) Floristic features of dry-hot and dry-warm valleys, Yunnan and Sichuan. Yunnan Science & Technology Press, Yunnan

    Google Scholar 

  • Kainulainen K, Razafimandimbison SG, Bremer B (2013) Phylogenetic relationships and new tribal delimitations in subfamily Ixoroideae (Rubiaceae). Bot J Linn Soc 173:387–406

    Article  Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498

    Article  Google Scholar 

  • Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16:447–479

    Article  Google Scholar 

  • Léotard G, Duputié A, Kjellberg F, Douzery EJ, Debain C, de Granville JJ, McKey D (2009) Phylogeography and the origin of cassava: new insights from the northern rim of the Amazonian basin. Mol Phylogenet Evol 53:329–334

    Article  PubMed  Google Scholar 

  • Li RN, Du F, Ma M, Liu Y, Liu J, Liu CY (2012) Study on distribution characteristics of national key protected wild plants in Northwest Yunnan. J West China For Sci 42:53–59

    Google Scholar 

  • Luan S, Chiang T-Y, Gong X (2006) High genetic diversity vs. low genetic differentiation in Nouelia insignis (Asteraceae), a narrowly distributed and endemic species in China, revealed by ISSR fingerprinting. Ann Bot 98:583–589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo XR, Gao YZ, Chen WQ, Ruan YZ (1999) Flora Reipublicae Popularis Sinicae, vol 71. Science Press, Beijing

    Google Scholar 

  • Luo Z, Diao Y, Yang L, Peng J, Liu Q, Chen F (2009) Community structure of Jatropha curcas in the Jinsha River dry-hot valley in Liangshan Prefecture, Sichuan, China. Chin J Appl Environ Microbiol 15:432–436

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM (2002) Population history of Manihot esculenta (Euphorbiaceae) inferred from nuclear DNA sequences. Mol Ecol 11:901–911

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci 96:5586–5591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ou XK (1994) The plant resources and its ecological characteristics in dry-hot valley of Jinsha River. J Plant Resour Environ 3:42–46

    Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci 94:9996–10001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pogson GH, Taggart CT, Mesa KA, Boutilier RG (2001) Isolation by distance in the Atlantic cod, Gadus morhua, at large and small geographic scales. Evolution 55:131–146

    Article  CAS  PubMed  Google Scholar 

  • Pons O, Petit R (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond A (2007) Tracer: MCMC trace analysis tool, version 1.5. Tracer website

  • Ribeiro R, Lemos-Filho J, Ramos A, Lovato M (2010) Phylogeography of the endangered rosewood Dalbergia nigra (Fabaceae): insights into the evolutionary history and conservation of the Brazilian Atlantic Forest. Heredity 106:46–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan Plateau. Science 321:1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Shaw J et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Strand A, Leebens Mack J, Milligan B (1997) Nuclear DNA‐based markers for plant evolutionary biology. Mol Ecol 6:113–118

    Article  CAS  PubMed  Google Scholar 

  • Svejda B et al (2010) Anticancer activity of novel plant extracts from Trailliaedoxa gracilis (WW Smith & Forrest) in human carcinoid KRJ-I cells. Anticancer Res 30:55–64

    PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed Central  CAS  PubMed  Google Scholar 

  • Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang ZH, Liu ED, Xiang CL, Peng H (2011) Revised description and new distribution report of Trailliaedoxa gracilis (Rubiaceae), an endemic species of China. Guihaia 31:569–571

    CAS  Google Scholar 

  • Woerner AE, Cox MP, Hammer MF (2007) Recombination-filtered genomic datasets by information maximization. Bioinformatics 23:1851–1853

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci 84:9054–9058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Wu H, Zeng LQ, Gong X (2010) Chromosome number of Trailliaedoxa gracilis (Rubiaceae) endemic to Jinsha River valley. Acta Bot Yunnanica 5:407–408

    Google Scholar 

  • Yan FL (1984) Natural geography of China. Science Press, Beijing

    Google Scholar 

  • Zhan QQ, Wang JF, Gong X, Peng H (2011) Patterns of chloroplast DNA variation in Cycas debaoensis (Cycadaceae): conservation implications. Conserv Genet 12:959–970

    Article  CAS  Google Scholar 

  • Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 44:941–951

    Article  CAS  PubMed  Google Scholar 

  • Zhao YJ, Gong X (2012) Genetic structure of the endangered Leucomeris decora (Asteraceae) in China inferred from chloroplast and nuclear DNA markers. Conserv Genet 13:271–281

    Article  CAS  Google Scholar 

  • Zhong XH (2000) Degradation of ecosystem and ways of its rehabilitation and reconstruction in dry and hot valley—take representative area of Jinsha River, Yunnan Province as an example. Resources and Environment in the Yangtze Basin 3:376–383

    Google Scholar 

  • Zhou SZ, Wang XL, Wang J, Xu LB (2006) A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan. Plateau Quatern Int 154:44–51

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (30870242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Zeng, L. & Gong, X. High Genetic Diversity and Population Differentiation in the Critically Endangered Plant Species Trailliaedoxa gracilis (Rubiaceae). Plant Mol Biol Rep 34, 327–338 (2016). https://doi.org/10.1007/s11105-015-0924-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0924-4

Keywords

Navigation