Skip to main content
Log in

Overexpression of NrCN improved TMV resistance in selection marker-free tobacco generated by Gene-Deletor system

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Two expression cassettes, the Nicotiana tabacum Ubi.U 4 promoter-driven tobacco mosaic virus (TMV)-resistant gene NrCN element and Arabidopsis thaliana senescence-expressive gene SAG 12 promoter-driven LoxP/FRT site-specific recombinase gene FLP expression fragment, were both introduced into the TMV-sensitive tobacco variety K326 via Agrobacterium tumefaciens-mediated genetic transformation. In T0 transgenic plants inoculated TMV, the hypersensitive response (HR) and systemic HR (SHR) occurred at the inoculated leaf and the upper non-inoculated leaf, respectively. The chlorophyll, H2O2 and salicylic acid (SA) content but malonyldialdehyde (MDA) content in transgenic inoculation plants was significantly higher than non-transgenic plants. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were exactly significantly higher than non-transgenic ones at the early stage after TMV inoculation, but the CAT activity in the former declined and was significantly lower than the latter at the later stage. In addition, the gene relative expression analysis of TMV-resistance-related protein components showed that the expressions of NrCN, NTF6, and PR-1a in genetically modified tobacco (GMT) plants were significantly upregulated after inoculation compared with wild-type tobaccos. Analysis of foreign gene deletion efficiency in transgenic plants indicated the foreign genes (e.g., recombinase gene FLP and screening reporter gene Bar::GUS) deletion events occurred in determinated GMT plant leaf with the development and maturity of the leaves. As a result, the transgenic plants became sensitive to herbicides. Therefore, the introduction of a plant expression vector (Gene-Deleter system with site-specific sequences LoxP/FRT and NrCN-contianing) into TMV-sensitive tobacco variety K326 enhanced the TMV resistance of sensitive tobacco plants. This study provides a basis for screening and acquisition of new varieties of marker-free and safe transgenic antiviral tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination, purification and properties of the Cre recombinase protein. J Biol Chem 259(3):1509–1514

    PubMed  CAS  Google Scholar 

  • Bacsó R, Hafez YM, Király Z, Király L (2011) Inhibition of virus replication and symptom expression by reactive oxygen species in tobacco infected with tobacco mosaic virus. Acta Phytopathologica et Entomologica Hungarica 46(1):1–10

    Article  CAS  Google Scholar 

  • Beekwilder KM (1999) The inheritance of resistance to tobacco mosaic virus in tobacco introductions. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8(10):1793–1807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266(5188):1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DMA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18(4):547–575

    Article  CAS  Google Scholar 

  • Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97(4):1908–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dinesh-Kumar SP, Whitham S, Choi D et al (1995) Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway. Proc Natl Acad Sci U S A 92(10):4175–4180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  • Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18(1):67–75

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9(1):275–296

    Article  Google Scholar 

  • Gao JS, Meng Y, Sasaki N, Kanegae H, Hayashi N, Nyunoya H (2010) Characterization and cloning of TMV resistance gene N homologues from Nicotiana tabacum. Afr J Biotechnol 9(47):7998–8006

    CAS  Google Scholar 

  • Gechev TS, Gadjev I, Van Breusegem F, Inzé D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59(4):708–714

    Article  PubMed  CAS  Google Scholar 

  • Geng SL, Shang SH, Chen XJ, Cao Y (2011) Advance in natural products from plants with anti-TMV activity. Chin Tob Sci 32(1):84–91

    Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48(1):525–545

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6(3):201–211

    Article  PubMed  CAS  Google Scholar 

  • Grüner R, Strompen G, Pfitzner AJP, Pfitzner UM (2003) Salicylic acid and the hypersensitive response initiate distinct signal transduction pathways in tobacco that converge on the as-1-like element of the PR-1a promoter. Eur J Biochem 270(24):4876–4886

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jyothishwaran G, Kotresha D, Selvaraj T, Srideshikan SH, Rajvanshi PK, Jayabaskaran C (2007) A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci 93(6):770–772

    CAS  Google Scholar 

  • Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 38(1):142–151

    Article  PubMed  CAS  Google Scholar 

  • Klug A (1999) The tobacco mosaic virus particle: structure and assembly. Philos Trans R Soc Lond Ser B Biol Sci 354(1383):531–535

    Article  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79(4):583–593

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Marathe R (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30(4):415–429

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. The. Plant J 38(5):800–809

    Article  PubMed  CAS  Google Scholar 

  • Luo KM, Duan H, Zhao DG, Zheng XL, Deng W, Chen YQ, Stewart JCN, McAvoy R, Jiang XN, Wu YH, He AG, Pei Y, Li Y (2007) GM-gene-deletor: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotecbnol J 5(2):263–274

    Article  CAS  Google Scholar 

  • Lv LT, Liu Y, Zhu YY, Zhao DG (2010) Selectable gene auto-excision via a cold inducible ‘gene deletor’ system. Afr J Agric Res 5(17):2426–2433

    Google Scholar 

  • Mauch-Mani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell Online 8(2):203–212

    Article  CAS  Google Scholar 

  • Menke FLH, Kang HG, Chen Z, Kumar D, Klessig DF (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant-Microbe Interact 18(10):1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Leon L, Gates CA, Attwood JM, Wood EA, Cox MM (1987) Purification of the FLP site-specific recombinase by affinity chromatography and re-examination of basic properties of the system. Nucleic Acids Res 15(16):6469–6488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montalbini P, Buonaurio R (1986) Effect of tobacco mosaic virus infection on leaves of soluble superoxide dismutase (SOD) in Nicotiana tabacum and Nicotiana glutinosa leaves. Plant Sci 47:135–143

    Article  CAS  Google Scholar 

  • Nap JP, Bijoet J, Stiekema WJ (1992) Biosafety of kanamycin-resistant transgenic plants. Transgenic Res 1:239–249

    Article  PubMed  CAS  Google Scholar 

  • Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41(2):181–194

    Article  PubMed  CAS  Google Scholar 

  • Padgett HS, Watanabe Y, Beachy RN (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol Plant-Microbe Interact 10(6):709–715

    Article  CAS  Google Scholar 

  • Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao SY, Coleman MJ, Dow CM, Jones JDG, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci 99(16):10865–10869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4(2):52–58

    Article  PubMed  Google Scholar 

  • Plesse B, Durr A, Marbach J, Genschik P, Fleck J (1997) Identification of a new cis-regulatory element in a Nicotiana tabacum polyubiquitin gene promoter. Mol Gen Genet MGG 254(3):258–266

    Article  PubMed  CAS  Google Scholar 

  • Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi.U 4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45(6):655–667

    Article  PubMed  CAS  Google Scholar 

  • Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P (2007) Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res 16:261–280

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen JB, Hammerschmidt R, Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol 97(4):1342–1347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Casas P, Klessig DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106(4):1675–1679

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sartory DP, Grobbelaar JU (1984) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114(3):177–187

    Article  CAS  Google Scholar 

  • Shim IS, Momose Y, Yamamoto A, Kim DW, Usui K (2003) Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul 39(3):285–292

    Article  CAS  Google Scholar 

  • Stange C, Matus JT, Elorza A, Arce-Johnson P (2004) Identification and characterization of a novel tobacco mosaic virus resistance N gene homologue in Nicotiana tabacum plants. Funct Plant Biol 31(2):149–158

    Article  CAS  Google Scholar 

  • van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJ (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 146(4):1983–1995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vernooij B, Uknes S, Ward E, Ryals J (1994) Salicylic acid as a signal molecule in plant-pathogen interactions. Curr Opin Cell Biol 6(2):275–279

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Fang HJ (2002) Plant genetic engineering (Chinese), 2nd edn. Science Press, Shanghai

    Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78(6):1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci U S A 93(16):8776–8781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilhelmová N, Procházková D, Sindelarova M, Sindelar L (2005) Photosynthesis in leaves of Nicotiana tabacum L. infected with tobacco mosaic virus. Photosynthetica 43(4):597–602

    Article  CAS  Google Scholar 

  • Yalpani N, Shulaev V, Raskin I (1993) Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83(7):702–708

    Article  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  PubMed  CAS  Google Scholar 

  • Yi SY, Yu SH, Choi D (1999) Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection. Mol Cells 9(3):320–325

    PubMed  CAS  Google Scholar 

  • Zhang GY, Chen M, Guo JM et al (2009) Isolation and characteristics of the CN gene, a tobacco mosaic virus resistance N gene homolog, from tobacco. Biochem Genet 47(3-4):301–314

    Article  PubMed  CAS  Google Scholar 

  • Zhang GY, Xiong TF, Ma YZ, Guo JM, Chen XP (2010) The construction of tobacco CN gene RNAi vector and its function analysis. Acta Tabacaria Sinica 16(4):77–82

    CAS  Google Scholar 

  • Zhao DG, Lu LT, He AG, Luo KM, Zheng XL, Deng W, Chen YQ, An XM, He MY (2008) The gene-deletor technology: Principle and potential application in genetically engineered agriculture. Mol Plant Breed 6(3):413–418

    CAS  Google Scholar 

  • Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH (2014) Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol Plant-Microbe Interact 27(6):567–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported “Research and Application on Genomics-Guided Tobacco Directed Mutation Breeding Technique” (contract no. 201201) from the Guizhou Branch of China National Tobacco Corporation & The National Transgenic Major Project of China [2014ZX08010-003].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Gang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, LJ., Zhao, D. & Zhao, DG. Overexpression of NrCN improved TMV resistance in selection marker-free tobacco generated by Gene-Deletor system. Plant Mol Biol Rep 33, 1619–1633 (2015). https://doi.org/10.1007/s11105-015-0854-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0854-1

Keywords

Navigation