Skip to main content

Advertisement

Log in

Determination S-Genotypes and Identification of Five Novel S-RNase Alleles in Wild Malus Species

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Apple (Malus × domestica Borkh.) is a typical Rosaceae species that exhibits gametophytic self-incompatibility (GSI) controlled by polymorphic S-alleles. In this study, the S-alleles of wild Malus species were amplified, sequenced and compared using polymerase chain reaction (PCR) technology. 21 S-alleles were identified in 27 wild Malus species. The results indicated that the overwhelming majority of S-alleles between wild Malus species and cultivars shared identical sequences. Simultaneously, five new S alleles (designated S 48 S 52 ) were identified in wild Malus species. There are the S 48 -RNase in M. angustifolia (Ation) Michaux, S 49 -RNase in M. orientalis Uglitzk. Ex Juz. and M. sylvestris (L.) Mill., S 50 -RNase in M. tschonoskii (Maxim.) C.K. Schneid. and M. sieversii (Ldb.) Roem., S 51 -RNase in M. komarovii (Sarg.) Rehd. and M. kansuensis (Batal.) C. K. Schneid., S 52 -RNase in M. manshurica (Maxim.) V. Komorov wild Malus species. Additionally, an S 1 -RNase was cloned in wild Malus prunifolia var. ringo, which have the same open reading frame as Malus × domestica cv. Fuji, but lacked whole intron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MA, Cornish EC, Mau SL (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321:38–44

    Article  CAS  Google Scholar 

  • Bernstein LB, Mount SM, Weiner AM (1983) Pseudogenes for human small nuclear RNA U3 appear to arise by integration of self-primed reverse transcripts of the RNA into new chromosomal sites. Cell 32:461–472

    Article  PubMed  CAS  Google Scholar 

  • Boskovic R, Tobuut KR (1999) Correlation of stylar rybonuclease isoenzymes with incompatibility alleles in apple. Euphytica 107:29–43

    Article  CAS  Google Scholar 

  • Breathnach R, Chambon P (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem 50:349–383

    Article  PubMed  CAS  Google Scholar 

  • Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Genet 106:703–714

    PubMed  CAS  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511

    Article  PubMed  CAS  Google Scholar 

  • Broothaerts W, Verdoodt L, Keulemans J, Janssens GA, Broekaert WF (1996) The self-incompatibility gene in apple and determination of the S-genotype of apple cultivars by PCR. Acta Horticult 423:103–109

    CAS  Google Scholar 

  • Castillo C, Nakanishi T, Ishimizu T, Takasaki T, Norioka S, Saito T (2002) S-RNase based PCR-RFLP system for S-genotype assignment in Japanese pear. Acta Horticult 587:449–458

    CAS  Google Scholar 

  • Cavalier ST (1991) Intron phylogeny: a new hypothesis. Trends Genet 7:145–148

    Google Scholar 

  • Cheng JH, Zhang YG, Li TZ (2006) Quick SDS method for RNA isolation from apple and other plant tissues with room temperature centrifugation. Acta Horticult Sin 33:470

    Google Scholar 

  • Clark AG, Kao T-H (1991) Excess nonsynonymous substitution at shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc Natl Acad Sci 88:9823–9827

    Article  PubMed  CAS  Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Google Scholar 

  • Derr LK (1998) The involvement of cellular recombination and repair genes in RNA-mediated recombination in Saccharomyces cerevisiae. Genetics 148:937–945

    PubMed  CAS  Google Scholar 

  • Dreesen RSG, Vanholme BTM, Luyten K, Wynsberghe LV, Fazio G, Ruiz IR, Keulemans J (2010) Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Mol Breeding 26(4):693–709

    Article  CAS  Google Scholar 

  • Gilbert W (1987) The exon theory of genes. Cold Spring Harb Symp Quant Bilology 52:901–905

    Article  CAS  Google Scholar 

  • Han ZH (1995) Germplasm resource of deciduous fruit trees [M]. China Agricultural Press, Beijing, pp 187–213 (in Chinese)

    Google Scholar 

  • Hankeln T, Friedl H, Ebersberger I, Martin J, Schmidt ER (1997) A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205:151–160

    Article  PubMed  CAS  Google Scholar 

  • Höfer M, Meister A (2010) Genome size variation in Malus species. J Bot. doi:10.1155/2010/480873

  • Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci 23:13167–13171

    Article  Google Scholar 

  • Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sexual Plant Reprod 16:235–243

    Article  CAS  Google Scholar 

  • Ishimizu T, Endo T, Yamaguchi-Kabata Y, Makamura KT, Sakiyama F, Norioka S (1998a) Identification of regions in which positive selection may operate in S-RNase of Rosaceae: implication for S-allele-specific recognition sites in S-RNase. FEBS Lett 440:337–342

    Article  PubMed  CAS  Google Scholar 

  • Ishimizu T, Shinkawa T, Sakiyama F, Norioka S (1998b) Primary structural features of Rosaceae S-RNases associated with gametophytic self-incompatibility. Plant Mol Biol 37:931–941

    Article  PubMed  CAS  Google Scholar 

  • Ishimizu T, Inoe K, Shimonaka M, Saito T, Terai O, Norioka S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor Appl Genet 98:961–967

    Article  CAS  Google Scholar 

  • Iwamoto M, Maekawa M, Saito A, Higo H, Higo K (1998) Evolutionary relationship of plant catalase genes inferred from intron–exon structures: isozyme divergence after the separation of monocots and dicots. Theor Appl Genet 97:9–19

    Article  CAS  Google Scholar 

  • Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W (1995) A molecular method for S-allele identification in apple based on allele-specific PCR. Theor Appl Genet 91:691–698

    Article  CAS  Google Scholar 

  • Kao TH, McCubbin AG (1997) Molecular and biochemical bases of gametophytic self-incompatibility in Solanaceae. Plant Physiol Biochem 35:171–176

    CAS  Google Scholar 

  • Kato S, Mukai Y (2004) Allelic diversity of S-RNase at the selfincompatibility locus in natural flowering cherry populations (Prunus lannesiana var speciosa). Heredity 92:249–256

    Article  PubMed  CAS  Google Scholar 

  • Kawata Y, Sakiyama F, Tamaaoki H (1988) Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem 176:683–697

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Park J, Hirata Y, Nou I (2008) Molecular characterization of new S-RNases (‘S 31 ’ and ‘S 32 ’) in apple (Malus × domestica Borkh). J Plant Biol 3(31):202–208

    Article  Google Scholar 

  • Kitahara K, Matsumoto S (2002) Sequence of the S 10 cDNA from ‘McIntosh’ apple and a PCR-digestion identification method. HortScience 37:187–190

    CAS  Google Scholar 

  • Kitahara K, Soejima J, Komatsu H, Fukui H, Matsumoto S (2000) Complete sequences of the S-genes ‘S d -’ and ‘S h -RNase’ cDNA in apple. HortScience 35:712–715

    CAS  Google Scholar 

  • Lee HS, Huang S, Kao TH (1994) S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560–563

    Article  PubMed  CAS  Google Scholar 

  • Li YN (1989) Study on the genome center of apple and Malus. Acta Horticult Sin 16(2):101–108 (in Chinese)

    Google Scholar 

  • Long M, Rosenberg C (2000) Testing the ‘proto-splice sites’ model of intron origin: evidence from analysis of intron phase correlations. Mol Biol Evol 17:1789–1796

    PubMed  CAS  Google Scholar 

  • Ma RC, Oliveira M (2002) Evolutionary analysis of S-RNase genes from Rosaceae species. Mol Genet Genomics 267:71–78

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Reynoird JR, Mourgues F, Cheureau E, Simoneau R (2001) A method for isolating total RNA from pear leaves. Plant Mol Biol Rep 19:69

    Article  Google Scholar 

  • Matityahu A, Stern RA, Schneider D, Goldway M (2005) Molecular identification of a new apple S-RNase — S29 — cloned from ‘Anna’, a low-chilling-requirement cultivar. HortScience 40(3):850–851

    CAS  Google Scholar 

  • Matsumoto S, Kitahara K (2000) Discovery of a new self-incompatibility allele in apple. HortScience 35:1329–1332

    CAS  Google Scholar 

  • Matsumoto S, Komori S, Kitahara K, Imazu S, Soejima J (1999a) S-genotypes of 15 apple cultivars and self-compatibility of ‘Megumi’. J Japan Soc Horticult Sci 68(2):236–241

    Article  CAS  Google Scholar 

  • Matsumoto S, Kitahara K, Komori S, Soejima J (1999b) A new S-allele in apple, ‘S g ’, and its similarity to the ‘S f ’ allele from Fuji. HortScience 34:708–710

    CAS  Google Scholar 

  • Matsumoto S, Hayashi S, Kitahara K, Soejima J (2001) Genomic DNA sequences encoding Malus × domestica Borkh. “Akane”, “Delicious” and Malus transitoria S-RNases. Mitochondrial DNA 12:381–383

    Article  CAS  Google Scholar 

  • Matton DP, Mau SL, Okamoto S, Clarke AE, Newbigin E (1995) The S locus of Nicotiana alata: genomic organization and sequence analysis of two S-RNase alleles. Plant Mol Biol 28:847–858

    Article  PubMed  CAS  Google Scholar 

  • Matton D, Maes O, Laublin G, Xike Q, Bertrand C, Morse D, Cappadocia M (1997) Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition. Plant Cell 9:1757–1766

    Article  PubMed  CAS  Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957

    Article  PubMed  CAS  Google Scholar 

  • Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  PubMed  CAS  Google Scholar 

  • Nunes MDS, Santos RAM, Ferreira SM, Viera J, Viera CP (2006) Variability patterns and positively selected sites at the gametophytic self incompatibility pollen SFB gene in a wild self-incompatible Prunus spinosa (Rosaceae) population. New Phytol 172:577–587

    Article  PubMed  CAS  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15

    Article  CAS  Google Scholar 

  • Rogers JH (1989) How were introns inserted into nuclear genes? Trends Genet 5:213–216

    Article  PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7(3):211–221

    PubMed  Google Scholar 

  • Saba-El-Leil M, Rivard S, Morse D, Cappadocia M (1994) The S 11 and S 13 self-incompatibility alleles in Solanum chacoense Bitt are remarkably similar. Plant Mol Biol 24:571–583

    Article  PubMed  CAS  Google Scholar 

  • Sassa H, Nishio T, Kowyama Y, Hirano H, Koba T, Ikehashi H (1996) Self-incompatibility (S) alleles of the Rosaceae encodes members of a distinct class of T2/S-ribonuclease superfamily. Mol Gen Genet 250:547–557

    PubMed  CAS  Google Scholar 

  • Sharp PA (1985) On the origin of RNA splicing and introns. Cell 42:397–400

    Article  PubMed  CAS  Google Scholar 

  • Steinbachs JE, Holsinger KE (2002) S-RNase mediated gametophytic self-incompatibility is ancestral in eudicots. Mol Biol Evol 19:825–829

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Ushijima K, Sassa H, Hirano H, Tao R, Gradziel TM, Dandekar AM (2000) Identification of self-incompatibility genotypes of almond by allelic-specific PCR analysis. Theor Appl Genet 101:344–349

    Article  CAS  Google Scholar 

  • Tatum TC, Stepanovic S, Biradar DP, Rayburn AL, Korban SS (2005) Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930

    Article  PubMed  CAS  Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet 260:261–268

    Article  PubMed  CAS  Google Scholar 

  • Van Nerum I, Geerts M, Van Haute A, Keulemans J, Broothaerts W (2001) Re-examination of the self-incompatibility genotype of apple cultivars containing putative ‘new’ S-alleles. Theor Appl Genet 103:584–591

    Article  Google Scholar 

  • Vieira J, Fonseca NA, Vieira CP (2008) An S-RNase-based gametophytic selfincompatibility system evolved only once in Eudicots. J Mol Evol 67:179–190

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hughes AL, Tsukamoto T, Ando T, Kao TH (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata. Plant Physiol 125:1012–1022

    Article  PubMed  CAS  Google Scholar 

  • Xie RJ, Zhou J, Wang GY, Zhang SM, Chen L, Gao ZS (2011) Cultivar identification and genetic diversity of Chinese Bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Mol Biol Rep 29:554–562

    Article  Google Scholar 

  • Xue YB, Carpenter R, Dickinson H, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814

    Article  PubMed  CAS  Google Scholar 

  • Yaegaki H, Shimada T, Moriguchi T, Hayama H, Haji T, Yamaguchi M (2001) Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot (Prunus mume Sieb. et Zucc.). Sexual Plant Reprod 13:251–257

    Article  CAS  Google Scholar 

  • Yamane H, Tao R, Sugiura A (1999) Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl. cv. Sordum). Plant Biotechnol 16(5):389–396

    Article  CAS  Google Scholar 

  • Yamane H, Tao R, Mori H, Sugiura A (2003) Identification of a non-S RNase, a possible ancestral form of S-RNases, in Prunus. Mol Genet Genomics 269:90–100

    PubMed  CAS  Google Scholar 

  • Zhu M, Zhang XM, Zhang KC, Jiang LJ, Zhang LM (2004) Development of a simple molecular marker specific for detecting the Self-compatible S 4” haplotype in sweet cherry (Prunus avium L.). Plant Mol Biol Rep 22:387–398

    Article  CAS  Google Scholar 

  • Zurek DM, Mou B, Beecher B, McClure B (1997) Exchanging domains between S-RNases from Nicotiana alata disrupts pollen recognition. Plant J 11:797–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (No. 30871697, 31071784) and Beijing Natural Science Foundation of China (No. 6102017). We also thank the Institute of Pomology of the Liaoning Academy of Agricultural Sciences and Fruit Tree Research Institute of the Chinese Academy of Agricultural Sciences for providing plant materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianzhong Li or Wen Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Long, S., Li, M. et al. Determination S-Genotypes and Identification of Five Novel S-RNase Alleles in Wild Malus Species. Plant Mol Biol Rep 30, 453–461 (2012). https://doi.org/10.1007/s11105-011-0345-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0345-y

Keywords

Navigation