Skip to main content
Log in

Prescribed fire alters foliar stoichiometry and nutrient resorption in the understorey of a subtropical eucalypt forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Changes to soil nutrient concentrations following vegetation fire may affect biogeochemical cycling and foliar stoichiometry. Phosphorus (P)-limited plant communities are widespread and may be particularly sensitive to fire, but have received relatively little research attention in this context.

Methods

We measured soil nutrient concentrations, foliar carbon (C), nitrogen (N) and P stoichiometry of understorey plants in a recently, frequently burned eucalyptus forest area in south-east Queensland, Australia, and compared these properties to an adjacent unburned area.

Results

Surface soils in the area subjected to relatively recent, frequent prescribed burning had higher P concentrations than those in the adjacent unburned area, although this did not include the ‘available’ forms of P. All plant species had high foliar N:P ratios, regardless of fire history, consistent with widespread P-limitation. Some species had lower foliar N:P ratios in the burned area, indicating interspecific variation in nutrient requirements and burning responses. The nutrient resorption proficiencies of a grasstree (Xanthorrhoea johnsonii Lee) were lower in the burned area, suggesting that the nutrient cycling of this species was made less conservative by burning.

Conclusions

The stoichiometric patterns observed in the responses of plants to prescribed burning highlight the significance of fire in this P-impoverished plant community, and suggest the potential value of stoichiometric approaches in fire ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Augusto L, Delerue F, Gallet-Budynek A, Achat DL (2013) Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach. Glob Biogeochem Cycles 27:804–815. doi:10.1002/gbc.20069

  • Badía D, Martí C, Aguirre AJ, Aznar JM, González-Pérez JA, De la Rosa JM, León J, Ibarra P, Echeverría T (2014) Wildfire effects on nutrients and organic carbon of a rendzic phaeozem in NE Spain: changes at cm-scale topsoil. Catena 113:267–275. doi:10.1016/j.catena.2013.08.002

    Article  Google Scholar 

  • Bai SH, Sun F, Xu Z, Blumfield TJ (2013) Ecophysiological status of different growth stage of understorey Acacia leiocalyx and Acacia disparrima in an Australian dry sclerophyll forest subjected to prescribed burning. J Soils Sediments 13:1378–1385. doi:10.1007/s11368-013-0747-6

    Article  Google Scholar 

  • Beckman GG (1967) Soils and land use in the Beenleigh-Brisbane area, south-eastern Queensland. Division of Soils, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia

    Google Scholar 

  • Blank RR, Allen F, Young JA (1994) Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant Soil 164:35–41. doi:10.1007/BF00010108

    Article  CAS  Google Scholar 

  • Bracken MES, Hillebrand H, Borer ET, Seabloom EW, Cebrian J, Cleland EE, Elser JJ, Gruner DS, Harpole WS, Ngai JT, Smith JE (2015) Signatures of nutrient limitation and co-limitation: responses of autotroph internal nutrient concentrations to nitrogen and phosphorus additions. Oikos 124:113–121. doi:10.1111/oik.01215

    Article  CAS  Google Scholar 

  • Bülow-Olsen A, Just J, Liddle MJ (1982) Growth and flowering history of Xanthorrhoea johnsonii Lee (Liliaceae) in Toohey Forest Queensland. Bot J Linn Soc 84:195–207. doi:10.1111/j.1095-8339.1982.tb00534.x

    Article  Google Scholar 

  • Catterall CP, Wallace CJ (1987) An island in suburbia: the natural and social history of Toohey Forest. Institute of Applied Environmental Research. Griffith University, Brisbane, Australia

    Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8

    Article  PubMed  Google Scholar 

  • Chambers DP, Attiwill PM (1994) The ash-bed effect in Eucalyptus regnans forest: chemical, physical and microbiological changes in soil after heating or partial sterilisation. Aust J Bot 42:739–749

    Article  CAS  Google Scholar 

  • Chen CR, Xu ZH, Keay P, Zhang SL (2005) Total soluble nitrogen in forest soils as determined by persulfate oxidation and by high temperature catalytic oxidation. Aust J Soil Res 43:515–523. doi:10.1071/sr04132

    Article  CAS  Google Scholar 

  • Covington WW, Sackett SS (1992) Soil mineral nitrogen changes following prescribed burning in ponderosa pine. For Ecol Manag 54:175–191. doi:10.1016/0378-1127(92)90011-W

  • Cui Q, Lü X, Wang Q, Han X (2010) Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant Soil 334:209–219. doi:10.1007/s11104-010-0375-5

    Article  CAS  Google Scholar 

  • Dantas V, Hirota M, Oliveira RS, Pausas JG (2015) Disturbance maintains alternative biome states. Ecol Lett 5:1–8. doi:10.1111/ele.12537

    Google Scholar 

  • Dijkstra FA, Adams MA (2015) Fire eases imbalances of nitrogen and phosphorus in woody plants. Ecosystems 18:769–779. doi:10.1007/s10021-015-9861-1

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608. doi:10.1111/j.1469-8137.2010.03214.x

    Article  CAS  PubMed  Google Scholar 

  • Gehring C, Denich M, Kanashiro M, Vlek PLG (1999) Response of secondary vegetation in Eastern Amazonia to relaxed nutrient availability constraints. Biogeochem 45:223–241. doi:10.1023/A:1006138815453

    Google Scholar 

  • Giardina CP, Rhoades CC (2001) Clear cutting and burning affect nitrogen supply, phosphorus fractions and seedling growth in soils from a Wyoming lodgepole pine forest. For Ecol Manag 140:19–28. doi:10.1016/S0378-1127(00)00272-3

  • Giardina CP, Sanford RL, Døckersmith IC (2000) Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Sci Soc Am J 64:399–405. doi:10.2136/sssaj2000.641399x

    Article  CAS  Google Scholar 

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ International 30:855–870. doi:10.1016/j.envint.2004.02.003

    Article  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Güsewell S, Gessner MO (2009) N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219. doi:10.1111/j.1365-2435.2008.01478.x

    Article  Google Scholar 

  • Güsewell S, Koerselman W, Verhoeven JTA (2003) Biomass N:P ratios as indicators of nutrient limitation of plant populations in wetlands. Ecol Appl 13:372–384. doi:10.1890/1051-0761.2003.013[0372:BNRAIO]2.0.CO;2

  • Hayati AA, Proctor MCF (1991) Limiting Nutrients in Acid-Mire Vegetation : Peat and Plant Analyses and Experiments on Plant Responses to Added Nutrients. J Ecol 79:75–95. doi:10.2307/2260785

    Article  Google Scholar 

  • Holt JA, Coventry RJ (1990) Nutrient cycling in Australian savannas. J Biogeogr 17:427–432. doi:10.2307/2845373

    Article  Google Scholar 

  • Huang J, Boerner REJ (2007) Effects of fire alone or combined with thinning on tissue nutrient concentrations and nutrient resorption in Desmodium nudiflorum. Oecologia 153:233–243. doi:10.1007/s00442-007-0733-z

    Article  PubMed  Google Scholar 

  • Huang W, Xu Z, Chen CR, Zhou G, Liu J, Abdullah KM, Reverchon F, Liu X (2013) Short-term effects of prescribed burning on phosphorus availability in a suburban native forest of subtropical Australia. J Soils Sediments 13:869–876. doi:10.1007/s11368-013-0660-z

    Article  CAS  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice-Hall, New Jersey

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecol 77:1716–1727. doi:10.2307/2265777

    Article  Google Scholar 

  • Lamont B (2003) Structure, ecology and physiology of root clusters–a review. Plant Soil 248:1–19. doi:10.1007/978-94-010-0243-1_1

    Article  CAS  Google Scholar 

  • Lamont B, Wittkuhn R, Korczynskyj D (2004) Ecology and ecophysiology of grasstrees. Aust J Bot 52:561–582. doi:10.1071/BT03127

    Article  Google Scholar 

  • Lewis T, Reif M, Prendergast E, Tran C (2012) The effect of long-term repeated burning and fire exclusion on above- and below-ground Blackbutt (Eucalyptus pilularis) forest vegetation assemblages. Austral Ecol 37:767–778. doi:10.1111/j.1442-9993.2011.02337.x

    Article  Google Scholar 

  • Liu Y, Stanturf J, Goodrick S (2010) Trends in global wildfire potential in a changing climate. For Ecol and Manage 259:685–697. doi:10.1016/j.foreco.2009.09.002

    Article  Google Scholar 

  • Lü X, Cui Q, Wang Q, Han X (2011) Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecol Eng 37:534–538. doi:10.1016/j.ecoleng.2010.12.013

    Article  Google Scholar 

  • Lunt ID (1998) Allocasuarina (Casuarinaceae) invasion of an unburnt coastal woodland at Ocean Grove, Victoria: structural changes 1971–1996. Aust J Bot 46:649–656. doi:10.1071/bt97032

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/s0003-2670(00)88444-5

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2011) Fire effects on temperate forest soil C and N storage. Ecol Appl 21:1189–1201. doi:10.1890/10-0660.1

    Article  PubMed  Google Scholar 

  • Ozanne PG, Specht RL (1981) Mineral nutrition of heathlands: phosphorus toxicity. In: Specht RL, ed. ecosystems of the world, Vol 9 A. Heathlands and related shrublands. Descriptive studies. Amsterdam, Elsevier Scientific

    Google Scholar 

  • Payton IJ, Lee WG, Dolby R, Mark AF (1986) Nutrient concentrations in narrow-leaved snow tussock (Chionochloa rigida) after spring burning. N Z J Bot 24:529–537. doi:10.1080/0028825x.1986.10409940

    Article  Google Scholar 

  • Pegtel D, Bakker J, Verweij L, Fresci L (1996) N, K and P deficiency in chronosequential cut summer-dry grasslands on gley podzol after the cessation of fertilizer application. Plant Soil 178:121–131. doi:10.1007/bf00011170

    Article  CAS  Google Scholar 

  • Pellegrini AFA, Hedin LO, Staver AC, Govender N (2015) Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecol 96:1275–1285. doi:10.1890/14-1158.1

    Article  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen J, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and cafeteria experiments. Austral Ecol 28:642–650. doi:10.1046/j.1442-9993.2003.01321.x

    Article  Google Scholar 

  • Pivello VR, Coutinho LM (1992) Transfer of macro-nutrients to the atmosphere during experimental burnings in an open cerado (Brazilian savanna). J Trop Ecol 8:487–497. doi:10.1017/s0266467400006829

    Article  Google Scholar 

  • Rayment GE, Lyons DJ (2010) Soil chemical methods – Australasia. CSIRO Publishing, Australia

    Google Scholar 

  • Rejmánková E (2005) Nutrient resorption in wetland macrophytes : comparison across several regions of different nutrient status. New Phytol 167:471–482. doi:10.1111/j.1469-8137.2005.01449.x

    Article  PubMed  Google Scholar 

  • Romanyà J, Khanna PKK, Raison RJJ (1994) Effects of slash burning on soil phosphorus fractions and sorption and desorption of phosphorus. For Ecol Manag 65:89–103. doi:10.1016/0378-1127(94)90161-9

  • Saunders WMH, Williams EG (1955) Observations on the determination of total organic phosphorous in soils. J Soil Sci 6:254–267. doi:10.1111/j.1365-2389.1955.tb00849.x

    Article  CAS  Google Scholar 

  • Schafer JL, Mack MC (2010) Short-term effects of fire on soil and plant nutrients in palmetto flatwoods. Plant Soil 334:433–447. doi:10.1007/s11104-010-0394-2

    Article  CAS  Google Scholar 

  • Shane MW, McCully ME, Lambers H (2004) Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J Exp Bot 55:1033–1044. doi:10.1093/jxb/erh111

    Article  CAS  PubMed  Google Scholar 

  • Sparling G, Vojvodić-Vuković M, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol Biochem 30:1469–1472. doi:10.1016/s0038-0717(98)00040-6

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, USA

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, New Jersey, USA

    Google Scholar 

  • Tomkins IB, Kellas JD, Tolhurst KG, Oswin DA (1991) Effects of fire intensity on soil chemistry in a Eucalypt forest. Aust J Soil Res 29:25–47. doi:10.1071/sr9910025

    Article  CAS  Google Scholar 

  • Tutua SS, Xu Z, Chen CR, Blumfield TJ (2013) Hot water extractable phosphorus pools as indicators of soil P responses to harvest residue management in an exotic pine plantation of subtropical Australia. J Soils Sediments 13:1573–1578. doi:10.1007/s11368-013-0775-2

    Article  CAS  Google Scholar 

  • Van de Vijver CADM, Poot P, Prins HHT (1999) Causes of increased nutrient concentrations in post-fire regrowth in an East African savanna. Plant Soil 214:173–185. doi:10.1023/A:1004753406424

    Article  CAS  Google Scholar 

  • Victorian Government (2010) 2009 Victorian Bushfires Royal Commission: Final report summary. Victoria, Australia

    Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecol 65:289–298. doi:10.2307/1939481

    Google Scholar 

  • Wood SW, Bowman DMJS (2011) Alternative stable states and the role of fire–vegetation–soil feedbacks in the temperate wilderness of southwest Tasmania. Landsc Ecol 27:13–28. doi:10.1007/s10980-011-9677-0

    Article  Google Scholar 

  • Wright IJ, Westoby M (2003) Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct Ecol 17:10–19. doi:10.1046/j.13652435.2003.00694.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of Australian Research council Future Fellowship project (FT0990547). We would like to thank the Brisbane City Council for granting permission to conduct work in Toohey Forest Conservation Park and for their assistance with site selection, as well as Bob Coutts, Dr. Haibo Dong, Zhongming Lan, Xian Liu, Maryam Esfandbod and Dr. Mehran Rezaei Rashti for their generous support in the field and in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengrong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Rafael S. Oliveira.

Electronic supplementary material

ESM 1 Fig. S1

(DOCX 20 kb)

ESM 2 Fig. S2

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, O.M., Lewis, T. & Chen, C. Prescribed fire alters foliar stoichiometry and nutrient resorption in the understorey of a subtropical eucalypt forest. Plant Soil 410, 181–191 (2017). https://doi.org/10.1007/s11104-016-2995-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2995-x

Keywords

Navigation