Skip to main content
Log in

Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

Accumulation of heavy metals in soil causes loss of cover vegetation and increases the production of reactive oxygen species (ROS). ROS accumulation induces the expression of genes encoding antioxidant enzymes and other proteins involved in redox homeostasis. This study aimed to evaluate the interaction between a saprophytic fungal consortium and mycorrhizal Rhizophagus irregularis with regard to the oxidative stress and molecular responses of Solanum lycopersicum L. grown in a soil contaminated with heavy metals.

Methods

We determined the effects of the saprophytic fungal consortium (Bjerkandera adusta and Mortierella sp) and the mycorrhizal fungus Rhizophagus irregularis on the plant antioxidant response and the expression levels of genes encoding metallothioneins (MT), phytochelatins (PC), the NRAMP transporter and heat shock protein (HSP) in Solanum lycopersicum cultivated in a heavy metal-contaminated soil.

Results

The fungal consortium increased plant growth, and the co-inoculation with R. irregularis synergistically improved soil biochemical activities. Superoxide dismutase activity decreased in all treatments. Peroxidase activity (ascorbate and guaiacol) increased in plants inoculated with R. irregularis and the fungal consortium. Dual inoculation decreased the malondialdehyde content in the leaves and increased transcription of the NRAMP, GR, MT2b, PCS and HSP90 genes.

Conclusions

Our results demonstrate that co-inoculation contributes to reduced plant stress by improving defence mechanisms and homeostasis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951. doi:10.1016/S0038-0717(00)00244-3

    Article  CAS  Google Scholar 

  • Almonacid L, Fuentes A, Ortiz J, Salas C, Garcia-Romera I, Ocampo J, Arriagada C (2015) Effect of mixing soil saprophytic fungi with organic residues on the response of Solanum lycopersicum to arbuscular mycorrhizal fungi. Soil Use and Management: n/a-n/a doi:10.1111/sum.12160.

  • Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207. doi:10.1016/j.envexpbot.2009.11.009

    Article  CAS  Google Scholar 

  • Armada E, Portela G, Roldán A, Azcón R (2014) Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232–234:640–648. doi:10.1016/j.geoderma.2014.06.025

    Article  Google Scholar 

  • Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus. Chemosphere 77:273–278

    Article  CAS  PubMed  Google Scholar 

  • Arriagada C, Pereira G, García-Romera I, Ocampo JA (2010) Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus deserticola and Trametes versicolor or Coriolopsis rigida. Soil Biol Biochem 42:118–124. doi:10.1016/j.soilbio.2009.10.011

    Article  CAS  Google Scholar 

  • Barea J-M, Pozo M-J, Azcón R, Azcón-Aguilar C (2013) Microbial interactions in the rhizosphere. Molecular microbial ecology of the rhizosphere. John Wiley & Sons, Inc

    Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Chamseddine M, Wided B, Guy H, Marie-Edith C, Fatma J (2009) Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul 57:89–99. doi:10.1007/s10725-008-9324-1

    Article  CAS  Google Scholar 

  • Chiang J, Cornejo P, López J, Romano S, Pascual J, Cea M (1985) Determinación de cadmio, cobre, manganeso, plomo, hierro, cinc y arsénico en sedimento atmosférico, en la zona de Quintero, V Región, Valparaíso, Chile. Chile Soc Chil Quim 30:139–158

    Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science 2014: 12. doi:10.1155/2014/752708.

  • Coelho PCS, Teixeira JPF, Gonçalves ONBSM (2011) Mining Activities: Health Impacts. In: ON Editor-in-Chief: Jerome (ed) Encyclopedia of Environmental Health. Elsevier, Burlington.

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  PubMed  Google Scholar 

  • De Gregori I, Fuentes E, Rojas M, Pinochet H, Potin-Gautier M (2003) Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J Environ Monit 5:287–295. doi:10.1039/b211469k

    Article  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson T (1980) Compendium of soil fungi. Academic Press, London

  • Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Responses of antioxidants to Paraquat in pea leaves (relationships to resistance). Plant Physiol 113:249–257. doi:10.1104/pp.113.1.249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 40:1566–1570. doi:10.1021/jf00021a018

    Article  CAS  Google Scholar 

  • Fosso-Kankeu E, Mulaba-Bafubiandi AF (2014) Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: a review. Phys Chem Earth, Parts A/B/C 67–69:242–252. doi:10.1016/j.pce.2013.09.018

    Article  Google Scholar 

  • Fracchia S, Mujica MT, García-Romera I, García-Garrido JM, Martín J, Ocampo JA, Godeas A (1998) Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soil 200:131–137. doi:10.1023/a:1004349426315

    Article  CAS  Google Scholar 

  • García-Romera I, García-Garrido JM, Martín J, Fracchia S, Mujica MT, Godeas A, Ocampo JA (1998) Interactions between saprotrophic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24:235–246

    Google Scholar 

  • Fracchia S, García-Romera I, Godeas A, Ocampo JA (2000) Effect of the saprophytic fungus Fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in greenhouse and field trials. Plant Soil 223:175–184

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavı́ valley, Chile. Chemosphere 41:15–23. doi:10.1016/S0045-6535(99)00385-9

    Article  CAS  PubMed  Google Scholar 

  • Goupil P, Souguir D, Ferjani E, Faure O, Hitmi A, Ledoigt G (2009) Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J Plant Physiol 166:1446–1452. doi:10.1016/j.jplph.2009.01.015

    Article  CAS  PubMed  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds Jr D (eds) Arbuscular mycorrhizas: physiology and function Springer Netherlands

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinet stoichiometry fat acid peroxidation Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  CAS  Google Scholar 

  • Hewitt EJ, Bureaux CA (1966) Sand and water culture methods used in the study of plant nutrition. Cambridge Univ Press

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72. doi:10.1007/bf00257924

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364. doi:10.1016/j.jtemb.2005.02.006

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. doi:10.1111/j.1469-8137.2011.03962.x

    Article  PubMed  Google Scholar 

  • Løvdal T, Lillo C (2009) Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem 387:238–242. doi:10.1016/j.ab.2009.01.024

  • Medina A, Roldán A, Azcón R (2010) The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus Niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manag 91:2547–2553. doi:10.1016/j.jenvman.2010.07.008

    Article  CAS  Google Scholar 

  • Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194:360–367. doi:10.1007/bf00197536

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–IN118. doi:10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  • Pinhero RG, Rao MV, Paliyath G, Murr DP, Fletcher RA (1997) Changes in activities of antioxidant enzymes and their relationship to genetic and Paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol 114:695–704. doi:10.1104/pp.114.2.695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H (2006) Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 38:3443–3452

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. doi:10.1093/jexbot/53.372.1351

    Article  PubMed  Google Scholar 

  • Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86:181–188. doi:10.1016/0269-7491(94)90189-9

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research 2nd edition.

  • Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35:79–93. doi:10.1016/j.apsoil.2006.05.001

    Article  Google Scholar 

  • Szőllősi R (2014) Chapter 3 - superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. In: Ahmad P (ed) Oxidative damage to plants. Academic Press, San Diego

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. doi:10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance, in Physiological and Genetical Aspects of Mycorrhizae. France: INRA Press eds Gianinazzi-Pearson V., Gianinazzi S., editors: 217–221.

  • Wang C, Zhang SH, Wang PF, Qian J, Hou J, Zhang WJ, Lu J (2009) Excess Zn alters the nutrient uptake and induces the antioxidative responses in submerged plant Hydrilla verticillata (L.F.) Royle. Chemosphere 76:938–945. doi:10.1016/j.chemosphere.2009.04.038

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81. doi:10.1016/j.ecoenv.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wu X, Li G, Qin P (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543–554. doi:10.1007/s00374-011-0563-3

    Article  CAS  Google Scholar 

  • Zhao S, Blumwald E (1998) Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation. Physiol Plant 104:134–142. doi:10.1034/j.1399-3054.1998.1040117.x

    Article  CAS  Google Scholar 

  • Zhu X, Song F, Xu H (2010) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT Project 1130662 and 3150441; CONICYT Doctoral Fellowship and Universidad de La Frontera DIUFRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Arriagada.

Additional information

Responsible Editor: Yoav Bashan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, A., Almonacid, L., Ocampo, J.A. et al. Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil. Plant Soil 407, 355–366 (2016). https://doi.org/10.1007/s11104-016-2893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2893-2

Keywords

Navigation