Skip to main content
Log in

Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

To characterize the response of sunflower to the low levels of Cd exposure encountered in agricultural soils.

Methods

Plants were exposed in hydroponics to low concentrations of Cd (2.5 nM or 20 nM) and sampled at four vegetative stages (6, 9, 14 and 19 expanded leaves). Plant growth, root Cd absorbing properties and Cd partitioning between organs were monitored along with Cd content in the xylem sap.

Results

Sunflower growth was not limited when exposed to 20 nM Cd. The amount of Cd taken up by the plant roots as well as the rate of Cd loading in xylem sap increased in direct proportion to the concentration of Cd2+ in the nutrient solution, suggesting that neither the root Cd absorbing capacities nor the root-to-shoot translocation of Cd were impacted by the level of Cd exposure. The partitioning of Cd between stem and leaves followed that of dry matter, regardless of the Cd treatment. The root-to-shoot partitioning of Cd at early growth stages differed from that prevailing later on.

Conclusions

In an agricultural context, the partitioning of Cd between sunflower organs does not appear to be affected by the level of Cd exposure during vegetative growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Fernandez A, Diaz-Benito P, Abadia A, Lopez-Millan AF, Abadia J (2014) Metal species involved in long distance metal transport in plants. Front Plant Sci 5:105. doi:10.3389/fpls.2014.00105

    Article  PubMed  PubMed Central  Google Scholar 

  • Arduini I, Masoni A, Mariotti M, Ercoli L (2004) Low cadmium application increases miscanthus growth and cadmium translocation. Environ Exp Bot 52:89–100

    Article  CAS  Google Scholar 

  • Balestri M, Ceccarini A, Forino LMC, Zelko I, Martinka M, Lux A, Castiglione MR (2014) Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. Planta 239:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Buckley WT, Buckley KE, Huang JZ (2010) Root cadmium desorption methods and their evaluation with compartmental modeling. New Phytol 188:280–290

    Article  CAS  PubMed  Google Scholar 

  • Chen WP, Li LQ, Chang AC, Wu LS, Kwon SI, Bottoms R (2008) Modeling uptake kinetics of cadmium by field-grown lettuce. Environ Pollut 152:147–152

    Article  CAS  PubMed  Google Scholar 

  • Chiang PN, Wang MK, Chiu CY, Chou SY (2006) Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol 21:479–488

    Article  CAS  PubMed  Google Scholar 

  • Christensen TH, Haung PM (1999) Solid phase cadmium and the reaction of aqueous cadmium with soil surfaces. In: McLaughlin MJ, Singh AK (eds) Cadmium in Soils and Plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Chuche J, Desvignes E, Bonnard O, Thiery D (2014) Phenological synchrony between Scaphoideus titanus (Hemiptera: Cicadellidae) hatchings and grapevine bud break: could this explain the insect’s expansion? B Entomol Res 105:82–91

    Article  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Custos J-M, Moyne C, Treillon T, Sterckeman T (2014) Contribution of Cd-EDTA complexes to cadmium uptake by maize: a modelling approach. Plant Soil 374:497–512

    Article  CAS  Google Scholar 

  • Dauguet S, Lacoste F (2013) Les enseignements de 7 années de plan de surveillance des oléagineux. OCL 20:119–123. http://dx.doi.org/10.1684/ocl.2012.0476

    Article  Google Scholar 

  • De Maria S, Puschenreiter M, Rivelli AR (2013) Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant Soil Environ 59:254–261

    Google Scholar 

  • Degryse F, Shahbazi A, Verheyen L, Smolders S (2012) Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant. Plant Physiol 160:1097–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • EFSA (2009) EFSA (European Food Safety Authority) (2009) Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139

    Google Scholar 

  • Enstone DE, Peterson CA, Ma FS (2002) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ 390:301–310

    Article  CAS  PubMed  Google Scholar 

  • Harris NS, Taylor GJ (2013) Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol 13:103. doi:10.1186/1471-2229-13-103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazama K, Nagata S, Fujimori T, Yanagisawa S, Yoneyama T (2014) Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol Plant. doi:10.1111/ppl.12309

    PubMed  Google Scholar 

  • Helmke PA (1999) Chemistry of cadmium in soil solution. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hough RL, Young SD, Crout NMJ (2003) Modelling of Cd, Cu, Ni, Pb and Zn uptake, by winter wheat and forage maize, from a sewage disposal farm. Soil Use Manag 19:19–27

    Article  Google Scholar 

  • Jia L, He XY, Chen W, Liu ZL, Huang YQ, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator–Lonicera japonica Thunb. Ecotoxicology 22:476–485

    Article  CAS  PubMed  Google Scholar 

  • Kaiser JJ, Lewis OAM (1980) Nitrate-Nitrogen assimilation in the leaves of Helianthus annuus L. New Phytol 85:235–241

    Article  CAS  Google Scholar 

  • Küpper H, Kochian LV (2009) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  PubMed  Google Scholar 

  • Laporte MA, Denaix L, Pagès L, Sterckeman T, Flénet F, Dauguet S, Nguyen C (2013) Longitudinal variation in cadmium influx in intact first order lateral roots of sunflower (Helianthus annuus. L). Plant Soil 372:581–595

    Article  CAS  Google Scholar 

  • Laporte MA, Sterckeman T, Dauguet S, Denaix L, Nguyen C (2015) Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environ Exp Bot 109:45–53

    Article  CAS  Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Schneider A, Nguyen C, Sterckeman T (2014) Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study. Environ Sci Pollut Res 21:12811–12826

    Article  CAS  Google Scholar 

  • Liu MQ, Yanai JT, Jiang RF, Zhang F, McGrath SP, Zhao FJ (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere 71:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Lopes CA, Mazzafera P, Arruda MAZ (2014) A comparative ionomic approach focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environ Exp Bot 107:180–186

    Article  Google Scholar 

  • Lovy L, Latt D, Sterckeman T (2013) Cadmium uptake and partitioning in the hyperaccumulator Noccaea caerulescens exposed to constant Cd concentrations throughout complete growth cycles. Plant Soil 362:345–354

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  PubMed  Google Scholar 

  • Nehnevajova E, Schmuelling T, Herzig T, Schwitzguebel JP (2009) Increased tolerance of sunflower mutant seedlings to Cd and Zn in hydroponic culture. Agrochimica 53:353–366

    CAS  Google Scholar 

  • Nguyen C, Soulier AJ, Masson P, Bussière S, Cornu JY (2015) Accumulation of Cd, Cu and Zn in shoots of maize (Zea mays L.) exposed to 0.8 or 20 nM Cd during vegetative growth and the relation with xylem sap composition. Environ Sci Pollut Res. doi:10.1007/s11356-015-5782-y

    Google Scholar 

  • Plénet D, Lemaire G (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 216:65–82

    Article  Google Scholar 

  • Redjala T, Zelko I, Sterckeman T, Legue V, Lux A (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241–248

    Article  CAS  Google Scholar 

  • Rodda MS, Li G, Reid RJ (2011) The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil 347:105–114

    Article  CAS  Google Scholar 

  • Sauvé S, Norvell WA, McBride M, Hendershot W (2000) Speciation and complexation of Cd in extracted soil solutions. Environ Sci Technol 34:291–296

    Article  Google Scholar 

  • Schneider A (2006) Adaptation of the ion exchange method for the determination of the free ionic fraction of cadmium in solution. J Environ Qual 35:394–401

    Article  CAS  PubMed  Google Scholar 

  • Simon L (1998) Cadmium accumulation and distribution in sunflower plant. J Plant Nutr 21:341–352

    Article  CAS  Google Scholar 

  • Stritsis C, Claassen N (2013) Cadmium uptake kinetics and plants factors of shoot Cd concentration. Plant Soil 367:591–603

    Article  CAS  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Google Scholar 

  • Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:1–9

    Article  Google Scholar 

  • Yoneyama T, Ishikawa S, Fujimaki S (2015) Route and regulation of zinc, cadmium and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int J Mol Sci 16:19111–19129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from ANR 2011 CESA 008 01. The authors are grateful for technical and human support provided by SCAB (PhD Juan Carlos Raposo) from SGIker of UPV/EHU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Cornu.

Additional information

Responsible Editor: Jian Feng Ma.

Electronic supplementary material

ESM 1

(DOC 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornu, J.Y., Bakoto, R., Bonnard, O. et al. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics. Plant Soil 404, 263–275 (2016). https://doi.org/10.1007/s11104-016-2839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2839-8

Keywords

Navigation