Skip to main content
Log in

Changes in the chemical composition of soil organic matter over time in the presence and absence of living roots: a pyrolysis GC/MS study

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

To determine changes in the organic matter chemical signature of soils incubated in the absence of fresh organic matter input, and how these were affected by the reestablishment of vegetation.

Methods

An Alfisol and an Andisol were incubated in 1.50 dm3 PVC pots for 295 days. Thereafter two 0.65 dm3 undisturbed subsamples from each pot were taken. In one subsample, Medicago sativa L. was seeded; in the other, the incubation was continued without plants for an additional period of 215 days. Soils sampled at times 0, 295 d and 510 day were characterised using pyrolysis-GC/MS.

Results and Conclusions

During the first 295 days (in which plants were absent) the most evident changes detected were the degradation of the most labile fraction as shown by the decrease of pyrolysis products of plant-derived polysaccharides, intact lignin and long-chain aliphatic compounds, along with the residual accumulation of guaiacol, mid- to short-chain aliphatic compounds, and the aromatic fraction. On day 510 and in the absence of plants, fingerprints of lignin and plant-derived polysaccharides largely decreased whilst microbial-derived polysaccharides showed an accumulating trend. Moreover the relative contribution of n-methyl ketones increased whereas that of long-chain aliphatic compounds, specifically n-alkanes, decreased. The relative contribution of plant-derived compounds was larger in the Alfisol at T0 and decreased more intensely than the Andisol along incubation. The Andisol had a considerable fraction of microbial-derived compounds (e.g., acetamide and diketopiperazine compounds). Plant inclusion (during the last 215 days of incubation) increased (i) the presence of compounds associated with fresh plant detritus (e.g., plant-derived polysaccharides and lignin) and (ii) alkylated benzenes (likely root-derived). An enhanced microbial activity due to input of plant detritus could be inferred from the increased content of chitin-derived compounds, this being especially evident in the Andisol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almendros G, Knicker H, González-Vila FJ (2003) Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C-and 15N-NMR spectroscopy. Org Geochem 34:1559–1568

    Article  CAS  Google Scholar 

  • Bachmann J, Guggenberger G, Baumgartl T, Ellerbrock RH, Urbanek E, Goebel M-O, Kaiser K, Horn R, Fischer WR (2008) Physical carbon-sequestration mechanisms under special consideration of soil wettability. J Plant Nutr Soil Sci 171:14–26. doi:10.1002/jpln.200700054

    Article  CAS  Google Scholar 

  • Baisden WT, Parfitt RL, Ross C, Schipper LA, Canessa S (2013) Evaluating 50 years of time-series soil radiocarbon data: towards routine calculation of robust C residence times. Biogeochemistry 112:129–137

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Boon JJ, Wetzel RG, Godshalk GL (1982) Pyrolysis mass spectrometry of some Scirpus species and their decomposition products. Limnol Oceanogr 27:839–848

    Article  CAS  Google Scholar 

  • Buurman P, Roscoe R (2011) Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis‐GC/MS study. Eur J Soil Sci 62:253–266

    Article  CAS  Google Scholar 

  • Buurman P, Van Bergen PF, Jongmans A, Meijer EL, Duran B, Van Lagen B (2005) Spatial and temporal variation in podzol organic matter studied by pyrolysis‐gas chromatography/mass spectrometry and micromorphology. Eur J Soil Sci 56:253–270

    Article  CAS  Google Scholar 

  • Buurman P, Peterse F, Almendros Martin G (2007) Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci 58:1330–1347

    Article  CAS  Google Scholar 

  • Chabbi A, Rumpel C (2009) Organic matter dynamics in agro-ecosystems–the knowledge gaps. Eur J Soil Sci 60:153–157

    Article  CAS  Google Scholar 

  • Chefetz B, Tarchitzky J, Deshmukh AP, Hatcher PG, Chen Y (2002) Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Sci Soc Am J 66:129–141

    Article  CAS  Google Scholar 

  • Chevalier T, Woignier T, Toucet J, Blanchart E (2010) Organic carbon stabilisation in the fractal pore structure of Andosols. Geoderma 159:182–188

    Article  Google Scholar 

  • Chiavari G, Galletti GC (1992) Pyrolysis-gas chromatography/mass spectrometry of amino acids. J Anal Appl Pyrol 24:123–137

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3 - A model for the turnover of soil carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluating of soil organic matter models using existing long-term datasets. NATO ASI Series I, Vol. 38. Springer, Heidelberg, pp 237–246

    Google Scholar 

  • Dalias P, Anderson JM, Bottner P, Coûteaux M-M (2002) Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions. Soil Biol Biochem 34:691–701

    Article  CAS  Google Scholar 

  • Dungait JA, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  CAS  PubMed  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Gleixner G, Bol R, Balesdent J (1999) Molecular insight into soil carbon turnover. Rapid Commun Mass Spectrom 13:1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Grant RF, Juma NG, McGill WB (1993) Simulation of carbon and nitrogen transformations in soil: mineralization. Soil Biol Biochem 25:1317–1329. doi:10.1016/0038-0717(93)90046-E

    Article  CAS  Google Scholar 

  • Grimalt JO, Sáiz-Jiménez C (1989) Lipids of soil humic acids. I. The hymatomelanic acid fraction. Sci Total Environ 81:409–420

    Article  Google Scholar 

  • Guan G, Marumoto T, Shindo H, Nishiyama M (1997) Relationships between the amount of microbial biomass and the physicochemical properties of soil comparison between volcanic and non-volcanic ash soils. Jpn J Soil Sci Plant Nutr 68:614–621 (in Japanese with English abstract)

    CAS  Google Scholar 

  • Gutiérrez A, Martinez M, Almendros G, González-Vila FJ, Martinez A (1995) Hyphal-sheath polysaccharides in fungal deterioration. Sci Total Environ 167:315–328

    Article  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209:188–197

    Article  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M, Van Hale R, Kaal J (2014a) Fate of biochar in chemically- and physically-defined soil organic carbon pools. Org Geochem 73:35–46

    Article  CAS  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M, Kirschbaum M, Wang T, Hale R (2014b) Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. Glob Chang Biol Bioenergy. doi:10.1111/gcbb.12183

    Google Scholar 

  • Hirsch PR, Gilliam LM, Sohi SP, Williams JK, Clark IM, Murray PJ (2009) Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities. Soil Biol Biochem 41:2021–2024

    Article  CAS  Google Scholar 

  • Inubushi K, Sakamoto K, Sawamoto T (2005) Properties of microbial biomass in acid soils and their turnover. Soil Sci Plant Nutr 51:605–608

    Article  CAS  Google Scholar 

  • Jansen B, Nierop KGJ (2009) Methyl ketones in high altitude ecuadorian andosols confirm excellent conservation of plant-specific n-alkane patterns. Org Geochem 40:61–69

    Article  CAS  Google Scholar 

  • Jansen B, Nierop KGJ, Hageman JA, Cleef AM, Verstraten JM (2006) The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the ecuadorian andes. Org Geochem 37:1514–1536

    Article  CAS  Google Scholar 

  • Kaal J, Rumpel C (2009) Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon? Org Geochem 40:1179–1187

    Article  CAS  Google Scholar 

  • Kaal J, Martínez Cortizas A, Nierop KGJ (2009) Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon. J Anal Appl Pyrol 85:408–416

    Article  CAS  Google Scholar 

  • Knicker H, Müller P, Hilscher A (2007) How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma 142:178–196

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Macías F, Camps-Arbestain M (2010) Soil carbon sequestration in a changing global environment. Mitig Adapt Strateg Glob Chang 15:511–529

    Article  Google Scholar 

  • Naafs DFW (2004) What are humic substances? A molecular approach to the study of organic matter in acid soils. PhD thesis, University of Utrecht, Utrecht, The Netherlands

  • Nierop KGJ (1998) Origin of aliphatic compounds in a forest soil. Org Geochem 29:1009–1016

    Article  CAS  Google Scholar 

  • Nierop KGJ, van Bergen PF, Buurman P, van Lagen B (2005) NaOH and Na4P2O7 extractable organic matter in two allophanic volcanic ash soils of the Azores Islandsa – pyrolysis GC/MS study. Geoderma 127:36–51

    Article  CAS  Google Scholar 

  • Parfitt RL (2009) Allophane and imogolite: role in soil biogeochemical processes. Clay Min 44:135–155

    Article  CAS  Google Scholar 

  • Parfitt RL, Saigusa M, Eden DN (1984) Soil development processes in an Aqualf–Ochrept sequence from loess with admixtures of tephra. New Zeal J Soil Sci 35:625–640

    Article  CAS  Google Scholar 

  • Poirier N, Sohi SP, Gaunt JL, Mahieu N, Randall EW, Powlson DS, Evershed RP (2005) The chemical composition of measurable soil organic matter pools. Org Geochem 36:1174–1189

    Article  CAS  Google Scholar 

  • Pouwels AD, Eijkel GB, Boon JJ (1989) Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose. J Anal Appl Pyrol 14:237–280

    Article  CAS  Google Scholar 

  • Quenea K, Derenne S, Largeau C, Rumpel C, Mariotti A (2004) Variation in lipid relative abundance and composition among different particle size fractions of a forest soil. Org Geochem 35:1355–1370

    Article  CAS  Google Scholar 

  • Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agr Food Chem 39:1426–1437

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Raven AM, Van Bergen PF, Stott AW, Dudd SN, Evershed RP (1997) Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. J Anal Appl Pyrol 40:267–285

    Article  Google Scholar 

  • Roberts AH, Thompson NA (1984) Seasonal distribution of pasture production in New Zealand: XVIII South Taranaki. N Z J Exp Agr 12:83–92

    Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter e a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic, carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Sáiz-Jiménez C (1992) Applications of pyrolysis-gas chromatography/mass spectrometry to the study of humic substances: evidence of aliphatic biopolymers in sedimentary and terrestrial humic acids. Sci Total Environ 117:13–25

    Article  Google Scholar 

  • Sáiz-Jiménez C (1994) Production of alkylbenzenes and alkylnaphthalenes upon pyrolysis of unsaturated fatty acids. Naturwissenschaften 81:451–453

    Google Scholar 

  • Sáiz-Jiménez C, De Leeuw JW (1986) Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography–mass spectrometry. J Anal Appl Pyrol 9:99–119

    Article  Google Scholar 

  • Schellekens J, Buurman P, Pontevedra-Pombal X (2009) Selecting parameters for the environmental interpretation of peat molecular chemistry–a pyrolysis-GC/MS study. Org Geochem 40:678–691

    Article  CAS  Google Scholar 

  • Schellekens J, Barberá GG, Buurman P (2013) Potential vegetation markers–analytical pyrolysis of modern plant species representative of Neolithic SE Spain. J Archaeol Sci 40:365–379

    Article  CAS  Google Scholar 

  • Schulten H-R, Plage B, Schnitzer M (1991) A chemical structure for humic substances. Naturwissenschaften 78:311–312

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA Natural Resources Conservation Service (NRCS), Washington

    Google Scholar 

  • Stankiewicz AB, van Bergen PF, Duncan IJ, Carter JF, Briggs DE, Evershed RP (1996) Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography and pyrolysis/gas chromatography/mass spectrometry. Rapid Commun Mass Sp 10:1747–1757

    Article  CAS  Google Scholar 

  • Stuczynski TJ, McCarty GW, Reeves JB, Wright RJ (1997) Use of pyrolysis GC/MS for assessing changes in soil organic matter quality. Soil Sci 162:97–105

    Article  CAS  Google Scholar 

  • Suárez-Abelenda M, Buurman P, Camps Arbestain M, Kaal J, Martínez-Cortizas A, Gartzia-Bengoetxea N, Macías F (2011) Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study. Eur J Soil Sci 62:834–848

    Article  Google Scholar 

  • Suárez-Abelenda M, Kaal J, Arbestain MC, Knicker H, Vázquez FM (2014) Molecular characteristics of permanganate and dichromate oxidation resistant soil organic matter from a Black C rich colluvial soil. Soil Res 52:164–179

    Article  Google Scholar 

  • Tegelaar EW, De Leeuw JW, Sáiz-Jiménez C (1989) Possible origin of aliphatic moieties in humic substances. Sci Total Environ 81:1–17

    Article  Google Scholar 

  • Theng BKG, Russell M, Churchman GJ, Parfitt RL (1982) Surface properties of allo- phane, halloysite, imogolite. Clay Clay Min 30:143–149

    Article  CAS  Google Scholar 

  • Van Bergen PF, Bull ID, Poulton PR, Evershed RP (1997) Organic geochemical studies of soils from the Rothamsted classical experiments - I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness. Org Geochem 26:117–135

    Article  Google Scholar 

  • Van der Kaaden A, Boon JJ, De Leeuw JW, De Lange F, Schuyl PW, Schulten HR, Bahr U (1984) Comparison of analytical pyrolysis techniques in the characterization of chitin. Anal Chem 56:2160–2165

    Article  Google Scholar 

  • Van Heemst JD, van Bergen PF, Stankiewicz BA, de Leeuw JW (1999) Multiple sources of alkylphenols produced upon pyrolysis of DOM, POM and recent sediments. J Anal Appl Pyrol 52:239–256

    Article  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Watts CW, Whalley WR, Longstaff DJ, White RP, Brook PC, Whitmore AP (2001) Aggregation of a soil with different cropping histories following the addition of organic materials. Soil Use Manag 17:263–268

    Article  Google Scholar 

  • Zegouagh Y, Derenne S, Dignac MF, Baruiso E, Mariotti A, Largeau C (2004) Demineralisation of a crop soil by mild hydrofluoric acid treatment: influence on organic matter composition and pyrolysis. J Anal Appl Pyrol 71:119–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.A. was funded by the Higher Education Commission of Pakistan. M.C.A. and H.M.S.K. Herath acknowledge the Ministry of Agriculture and Forestry New Zealand (MAF) for funding this research. The authors thank the anonymous reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Suárez-Abelenda.

Additional information

Responsible Editor: Zucong Cai.

Appendix A

Appendix A

Table 4

Table 4 List of pyrolysis compounds, with masses used for quantification, molecular weights (M+), retention times (RT) and mean relative abundances (% of TQPA). Coding: Cx:0, n-alkane; Cx:1, n-alkene; MK, n-methyl ketones; FA, n-fatty acids; Lg, lignin moieties; Ph, phenols and alkylated phenols; Ar coded and B coded (alkyl benzenes) monocyclic aromatic compounds (MAHs); PA coded and NA coded (naphthalene compounds) polycyclic aromatic hydrocarbons (PAHs); N, nitrogen-containing compounds (including AM coded, n-alkyl amides); Ps, polysaccharide-derived compounds and St, sterol-derived compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Abelenda, M., Ahmad, R., Camps-Arbestain, M. et al. Changes in the chemical composition of soil organic matter over time in the presence and absence of living roots: a pyrolysis GC/MS study. Plant Soil 391, 161–177 (2015). https://doi.org/10.1007/s11104-015-2423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2423-7

Keywords

Navigation