Skip to main content
Log in

Endophytic bacteria in cacti native to a Brazilian semi-arid region

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

To identify endophytic bacteria in Brazilian cacti, and to evaluate the effects of those bacteria on the growth of Cereus jamacaru seedlings and phosphate solubilization in vitro.

Methods

Samples of roots and stems of C. jamacaru and Melocactus zehntneri were collected from the Aiuaba ecological Station in Brazilian semi-arid region. Bacterial isolates were cultured in semi-solid N-free media and grown in Pikoskaya’s and GL media phosphate solubilizing. In seedling assays, strains of Rhizobium (CAC 01), Enterobacter (CAC 02 and CAC 11), Pseudomonas (CAC 03) and Burkholderia (CAC 07 and CAC 10) were tested.

Results

Culturable endophytic bacteria were observed in all samples from cacti, but the populations were low. Representatives of eight groups were identified based on partial sequences of 16S rDNA and were related to Rhizobium, Burkholderia, Enterobacter, Pseudomonas, and Pantoea species. The colonization of seedlings with endophytic bacteria was observed, but biomass accumulation did not show a significant increase. All strains were able to grow on solid Pikoskaya’s medium.

Conclusions

The bacterial strains didn’t increase significantly the cactus biomass during 6 months of cultivation, but showing potential phosphate solubilizing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre-Garrido JF, Montiel-Lugo D, Hernández-Rodríguez C, Torres-Cortés G, Millán V, Toro N, Martínez-Abarca F, Ramírez-Saad HC (2012) Bacterial community structure in the rhizosphere of three cactus species from semiarid highlands in central Mexico. Antonie Van Leeuwenhoek 101:891–904

    Article  PubMed  Google Scholar 

  • Baldani VDL, Baldani JI, Olivares F, Döbereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73

    Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 195:15–24

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria / plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Bashan Y, Rojas A, Puente ME (1999) Improved establishment and development of three cacti species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Can J Microbiol 45:441–451

    Article  CAS  Google Scholar 

  • Bashan Y, Salazar B, Puente ME, Bacilio M, Linderman R (2009) Enhance d establishment and growth of giant cardon cactus in an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plant growth-promoting microorganisms and compost. Biol Fertil Soils 45:585–594

    Article  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: aproposal for an alternative procedure. Biol Fertil Soils 49:465–479

    Article  CAS  Google Scholar 

  • Berg G, Müller H, Zachow C, Opelt K, Scherwinski K, Tilcher R, Ullrich A, Hallmann J, Grosch R, Sessitsch A (2008) Endophytes: structural and functional diversity and biotechnological applications in control of plant pathogens. Simbiogenetics 6:17–26

    CAS  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid-tolerant bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Cheng HR, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 28:55–59

    Article  CAS  PubMed  Google Scholar 

  • Correia D, Gonçalves NA, Couto HYZ, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis x Eucalyptus urophylla na multiplicação in vitro. IPEF 49:107–116

    Google Scholar 

  • Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    Article  CAS  PubMed  Google Scholar 

  • Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-SPI, Itaguai. ISBN 8585007656, 9788585007652

  • Dunn IANS, Blattner FR (1987) Charons 36 to 40: multienzyme, high capacity, recobination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res 15:2677–2698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. Isolated From wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • James EK, Olivares FL (1997) Infection and colonization of sugar cane and other graminaceous plants by endophytic bacteria. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • Katznelson H, Bose B (1959) Metabolic activity and phosphate-dissolving capability by of bacterial isolates from wheat roots, rhizosphere and non rhizosphere soil. Can J Microbiol 5:79–85

    Article  CAS  PubMed  Google Scholar 

  • Kavamura VN, Santos SN, Silva JL, Parma MM, Ávila LA, Visconti A, Zucchi TD, Taketani RG, Andreote FD, Melo IS (2013) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 168:183–191

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhao H, Chen S (2006) Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr Microbiol 52:186–190

    Article  CAS  PubMed  Google Scholar 

  • Loera TML, Sánches-Yáñez JM, Penã-Cabriales JJ (1996) Acetylene reduction activity on the root of cactaceous plants. Rev Lat-Amer Microbiol 38:7–15

    CAS  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M, Cruz-Agüero G (2009) Rock-colonizing plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran desert. Plant Ecol 201:575–588

    Article  Google Scholar 

  • Lopez BR, Bashan Y, Bacilio M (2011) Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran desert. Arch Microbiol 193:527–541

    Article  CAS  PubMed  Google Scholar 

  • Lopez BR, Tinoco-Ojanguren C, Bacilio M, Mendoza A, Bashan Y (2012) Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environ Exp Bot 81:26–36

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Mascarua-Esparza MA, Villa-Gonzalez R, Caballero-Mellado J (1988) Acetylene reduction and indolacetic acid production by Azospirillum isolates from Cactaceous plants. Plant Soil 106:91–95

    Article  CAS  Google Scholar 

  • Olivares FL, James EK, Baldani JI (1997) Infection of mottled stripe disease susceptible and resistant varieties of sugar cane by endophytic diazotroph Herbaspirillum. New Phytol 135:723–737

    Article  Google Scholar 

  • Pikoskaya RI (1948) Mobilization of phosphates in soil in relation with vital activity of some microbial species. Mikrobiologiya 17:362–370 (in Russian)

    Google Scholar 

  • Prakamhang J, Minamisawa K, Teamtaisong K, Boonkerd N, Teaumroong N (2009) The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Appl Soil Ecol 42:141–149

    Article  Google Scholar 

  • Puente ME, Bashan Y (1993) Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar cardon cactus (Pachycereus pringlei). Symbiosis 15:49–60

    Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004a) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2004b) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6:643–650

    Article  CAS  PubMed  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009a) Rock-degrading endophytic bacteria in cacti. Environ Exp Bot 66:389–401

    Article  CAS  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009b) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  • Rao AV, Venkateswarlu B (1982) Associative symbiosis of Azospirillum lipoferum with dicotyledonous succulent plants of the Indian desert. Can J Microbiol 28:778–782

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  PubMed  Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological dinitrogen fixation in gramineae and palm trees. Crit Rev Plant Sci 19:227–247

    Article  CAS  Google Scholar 

  • Rodrigues Neto J, Malavolta Junior VA, Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Sum Phytol 12:16

  • Sessitsch A, Puschenreiter M (2008) Endophytes and rhizosphere bacteria of plants growing in heavy metal contaminated soil. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils, vol 13. Springer, Heidelberg, pp 317–332

    Chapter  Google Scholar 

  • Torres-Cortés G, Millán V, Fernández-González AJ, Aguirre-Garrido JF, Fernández-López M, Toro N, Martínez-Abarca F (2012) Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant Soil 357:275–288

    Article  Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Döbereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu L, Zhou L, Zhao J, Li J, Li X, Wang J (2008) Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Lett Appl Microbiol 46:68–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Federal University of Ceará (UFC), Brazilian Agricultural Research Corporation (EMBRAPA), Ceará Foundation for Scientific and Technological Development (FUNCAP), Coordination for the Improvement of Higher Education Personnel (CAPES) and Chico Mendes Institute for Biodiversity Conservation (ICMBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vinícius Leite Lima.

Additional information

Responsible Editor: Yoav Bashan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, J.V.L., Weber, O.B., Correia, D. et al. Endophytic bacteria in cacti native to a Brazilian semi-arid region. Plant Soil 389, 25–33 (2015). https://doi.org/10.1007/s11104-014-2344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2344-x

Keywords

Navigation