Skip to main content
Log in

Plant-specific Dof transcription factors VASCULAR-RELATED DOF1 and VASCULAR-RELATED DOF2 regulate vascular cell differentiation and lignin biosynthesis in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Plant-specific Dof transcription factors VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime in Arabidopsis, with shifting their transcriptional target genes.

Abstract

Vascular system is one of critical tissues for vascular plants to transport low-molecular compounds, such as water, minerals, and the photosynthetic product, sucrose. Here, we report the involvement of two Dof transcription factors, named VASCULAR-RELATED DOF1 (VDOF1)/VDOF4.6 and VDOF2/VDOF1.8, in vascular cell differentiation and lignin biosynthesis in Arabidopsis. VDOF genes were expressed in vascular tissues, but the detailed expression sites were partly different between VDOF1 and VDOF2. Vein patterning and lignin analysis of VDOF overexpressors and double mutant vdof1 vdof2 suggested that VDOF1 and VDOF2 would function as negative regulators of vein formation in seedlings, and lignin deposition in inflorescence stems. Interestingly, effects of VDOF overexpression in lignin deposition were different by developmental stages of inflorescence stems, and total lignin contents were increased and decreased in VDOF1 and VDOF2 overexpressors, respectively. RNA-seq analysis of inducible VDOF overexpressors demonstrated that the genes for cell wall biosynthesis, including lignin biosynthetic genes, and the transcription factor genes related to stress response and brassinosteroid signaling were commonly affected by VDOF1 and VDOF2 overexpression. Taken together, we concluded that VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime, with shifting their transcriptional target genes: in seedlings, the VDOF genes negatively regulate vein formation, while at reproductive stages, the VDOF proteins target lignin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2D NMR :

Two-dimensional nuclear magnetic resonance

BR :

Brassinosteroid

GUS :

β-Glucuronidase

NAC :

NAC SECONDARY WALL THICKENING PROMOTING FACTOR

PEAR :

PHLOEM EARLY DOF

VDOF :

VASCULAR-RELATED DOF

VND :

VASCULAR-RELATED NAC-DOMAIN

YFP:

Yellow fluorescent protein

References

  • Bai MY, Fan M, Oh E, Wang ZY (2012) A triple Helix-Loop-Helix/Basic Helix-Loop-Helix cascad controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell 24:4917–4929

    PubMed  PubMed Central  Google Scholar 

  • Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berthet S, Thevenin J, Baratiny D, Demont-Caulet N, Debeaujon I, Przemyslaw B, Leplé J, Huis R, Hawkins S, Gomez LD, Lapierre C, Jouanin L (2012) Role of plant Laccases in lignin polymerization. Adv Bot Res 61:145–172

    CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    CAS  PubMed  Google Scholar 

  • Boija A, Klein IA, Sabari BR, Dall’Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM, Abraham BJ, Afeyan LK, Guo YE, Rimel JK, Fant CB, Schuijers J, Lee TI, Taatjes DJ, Young RA (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:1842–1855

    CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M, Chapple C (2014) Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:376–380

    CAS  PubMed  Google Scholar 

  • Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    PubMed  Google Scholar 

  • Chen F, Dixon R (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotech 25:759–761

    CAS  Google Scholar 

  • Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G (2013) Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep 32:1589–1599

    CAS  PubMed  Google Scholar 

  • Clay NK, Nelson T (2002) VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in Arabidopsis. Plant Cell 14:2707–2722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Diaz I, Vicente-Carbajose J, Abraham Z, Martinez M, Isabel-La Moneda I, Carbonera P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J 29:453–464

    CAS  PubMed  Google Scholar 

  • Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29

    CAS  PubMed  Google Scholar 

  • Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136:3235–3246

    CAS  PubMed  Google Scholar 

  • Endo H, Yamaguchi M, Tamura T, Nakano Y, Nishikubo N, Yoneda A, Kato K, Kajita S, Katayama Y, Ohtani M, Demura T (2015) Multiple classes of transcription factors regulate the expression of VASCULAR-RELATED NAC-DOMAIN7, a master switch of xylem vessel differentiation. Plant Cell Physiol 56:242–254

    CAS  PubMed  Google Scholar 

  • Fan M, Bai MY, Kim JG, Wang T, Oh E, Chen L, Park CH, Son SH, Kim SK, Mudgett MB, Wang ZY (2014) The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis. Plant Cell 26:828–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta KM, Hellmann E, Helariutta Y (2014) Molecular control of cell specification and cell differentiation during procambial development. Annu Rev Plant Biol 65:607–638

    CAS  PubMed  Google Scholar 

  • Gardiner J, Sherr I, Scarpella E (2010) Expression of DOF genes identifies early stages of vascular development in Arabidopsis leaves. Int J Dev Biol 54:1389–1396

    CAS  PubMed  Google Scholar 

  • Grima-Pettenati J, Soler M, Camargom E, Wang H (2012) Transcriptional regulation of the lignin biosynthetic pathway revisited: new players and insights. In: Jouanin L, Lapierre C (eds) Advances in botanical research. Academic Press, Burlington, pp 173–218

    Google Scholar 

  • Guo Y, Qin G, Gu H, Qu L-J (2009) Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell 21:3518–3534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herr JM Jr (1992) New uses for calcium chloride solution as a mounting medium. Biotech Histochem 67:9–13

    PubMed  Google Scholar 

  • Herrero J, Esteban-Carrasco A, Zapata JM (2013) Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol Biochem 67:77–86

    CAS  PubMed  Google Scholar 

  • Hir RL, Bellini C (2013) The plant-specific Dof transcription factors family: new players involved in vascular system development and functioning in Arabidopsis. Front Plant Sci 4:164

    PubMed  PubMed Central  Google Scholar 

  • Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 21:2284–2297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    PubMed  PubMed Central  Google Scholar 

  • Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H (2014) Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat commun 5:3504

    PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2007) Sequential activation of two Dof transcription factor gene promoters during vascular development in Arabidopsis thaliana. Plant Physiol Biochem 45:623–629

    CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2015) Transcriptional repression caused by Dof5.8 is involved in proper vein network formation in Arabidopsis thaliana leaves. J Plant Res 128:643–652

    CAS  PubMed  Google Scholar 

  • Konishi M, Donner TJ, Scarpella E, Yanagisawa S (2015) MONOPTEROS directly activates the auxin-inducible promoter of the Dof5.8 transcription factor gene in Arabidopsis thaliana leaf provascular cells. J Exp Bot 66:283–291

    CAS  PubMed  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Gene Dev 19:1855–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassmann T (2015) TagDust2: a generic method to extract reads from sequencing data. BMC Bioinformatics 16:24

    PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496

    CAS  PubMed  Google Scholar 

  • Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls; high-resolution solution-state NMR. Plant J 35:535–544

    CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    CAS  PubMed  Google Scholar 

  • Martin EW, Mittag T (2018) Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry 57:2478–2487

    CAS  PubMed  Google Scholar 

  • McCarthy RL, Zhong R, Ye ZH (2009) MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol 50:1950–1964

    CAS  PubMed  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickening and are required for anther dehiscence. Plant Cell 17:2993–3006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashima S, Sebastian J, Lee JY, Helariutta Y (2013) Stem cell function during plant vascular development. EMBO J 32:178–193

    CAS  PubMed  Google Scholar 

  • Miyashima S, Roszak P, Sevilem I, Toyokura K, Blob B, Heo JO, Mellor N, Help-Rinta-Rahko H, Otero S, Smet W, Boekschoten M, Hooiveld G, Hashimoto K, Smetana O, Siligato R, Wallner ES, Mähönen AP, Kondo Y, Melnyk CW, Greb T, Nakajima K, Sozzani R, Bishopp A, De Rybel B, Helariutta Y (2019) Mobile PEAR transcription factors integrate positional cues to prime cambial growth. Nature 565:490–494

    CAS  PubMed  Google Scholar 

  • Myburg A, Lev-Yadun S, Sederoff RR (2001). Xylem structure and function eLS. https://doi.org/10.1002/9780470015902.a0001302.pub2

    Article  Google Scholar 

  • Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M (2015) NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front Plant Sci 6:288

    PubMed  PubMed Central  Google Scholar 

  • Nieminen K, Blomster T, Helariutta Y, Mähönen AP (2015) Vascular cambium development. Arabidopsis Book 13:e0177

    PubMed  PubMed Central  Google Scholar 

  • Ohtani M, Demura T (2019) The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB- gene regulatory network model. Curr Opin Biotech 56:82–87

    CAS  PubMed  Google Scholar 

  • Ohtani M, Ramachandran V, Tokumoto T, Takebayashi A, Ihara A, Matsumoto T, Hiroyama R, Nishikubo N, Demura T (2017) Identification of novel factors that increase enzymatic saccharification efficiency in Arabidopsis wood cells. Plant Biotechnol 34:203–206

    CAS  Google Scholar 

  • Østergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder KG, Mundy J, Gajhede M, Henriksen A (2000) Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol 44:231–243

    PubMed  Google Scholar 

  • Pyo H, Demura T, Fukuda H (2007) TERE, a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary cell wall formation during differentiation of tracheary elements. Plant J 51:955–965

    CAS  PubMed  Google Scholar 

  • Rybel BD, Mähönen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nature 17:30–40

    Google Scholar 

  • Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64:11–31

    CAS  PubMed  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguina A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skirycz A, Jozefczuk S, Stobiecki M, Muth D, Zanor MI, Witt I, Mueller-Roeber B (2007) Transcription factor AtDOF4;2 affcets phenylpropanoid metabolism in Arabidopsis thaliana. New Phytol 175:425–438

    CAS  PubMed  Google Scholar 

  • Smetana O, Mäkilä R, Lyu M, Amiryousefi A, Sánchez Rodríguez F, Wu MF, Solé-Gil A, Leal Gavarrón M, Siligato R, Miyashima S, Roszak P, Blomster T, Reed JW, Broholm S, Mähönen AP (2019) High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 565:485–489

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124:1493–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Suzuki Y, Yamamoto N, Hattori T, Sakamoto M, Umezawa T (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotech 26:337–340

    CAS  Google Scholar 

  • Tan TT, Endo H, Sano R, Kurata T, Yamaguchi M, Ohtani M, Demura T (2018) Transcription Factors VND1-VND3 Contribute to Cotyledon Xylem Vessel Formation. Plant Physiol 176:773–789

    CAS  PubMed  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tobimatsu Y, Schuetz M (2019) Lignin polymerization: how do plants manage the chemistry so well? Curr Opin Biotechnol 56:75–89

    CAS  PubMed  Google Scholar 

  • Tobimatsu Y, Chen F, Nakashima J, Escamilla-Trevino L, Jackson L, Dixon RA, Ralph J (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 25:2587–2600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T (2018) Lignin modification in planta for valorization. Phytochem Rev 17:1305–1327

    CAS  Google Scholar 

  • Van Acker V, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuel 6:1–17

    Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verna C, Megan GS, Linh NM, Scarpella E (2015) Control of vein network topology by auxin transport. BMC Biol 13:94

    PubMed  PubMed Central  Google Scholar 

  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J 67:119–129

    CAS  PubMed  Google Scholar 

  • Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH, Chen YF (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    CAS  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652 – 664

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamura M, Hattori T, Suzuki S, Shibata D, Umezawa T (2012) Microscale thioacidolysis method for the rapid analysis of β-O-4 substructures in lignin. Plant Biotechnol 29:419–423

    CAS  Google Scholar 

  • Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci 7:555–560

    CAS  PubMed  Google Scholar 

  • Ye ZH (2002) Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202

    CAS  PubMed  Google Scholar 

  • Yue F, Lu F, Sun RC, Ralph J (2012) Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards. J Agric Food Chem 60:922–928

    CAS  PubMed  Google Scholar 

  • Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25:3976–3987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X, Wang X, Lin J, Li X (2015) MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol 169:2539–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Ye ZH (2014) Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci 229:193–207

    CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary cell wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Arabidopsis Biological Research Center for providing Arabidopsis seeds. We also thank Dr. Shunsuke Miyashima (Nara Institute of Science and Technology, Japan) for technical support in the localization analysis of VDOF-YFP proteins, Dr. Minoru Kubo, Dr. Ko Kato, Dr. Toshiro Ito and Dr. Masaaki Umeda (Nara Institute of Science and Technology, Japan) and Dr. Lacey A. Samuels (University of British Columbia, Canada) for fruitful discussions, Dr. Hironori Kaji and Ms. Ayaka Maeno (Kyoto University) for their support in the NMR experiments, Ms. Megumi Ozaki (Kyoto University) for her technical assistance for lignin determination, and Ms. Shizuka Nishida and Ms. Eriko Tanaka (Nara Institute of Science and Technology, Japan) for their technical supports to grow plants. This work was supported in part by JSPS KAKENHI (grant numbers JP25291062 and JP18H02466 to T.D., JP20H03271 to M.O.), the MEXT KAKENHI (Grant Numbers JP24114002 to T.D., JP25114520, JP15H01235, and JP20H05405 to M.O., JP18H05484 and JP18H05489 to M.O. and T.D.), JST ERATO Grant Number JPMJER1602, the Hamaguchi Foundation for the Advancement of Biochemistry, and the Asahi Glass Foundation to M.O., and Japan Advanced Plant Science Network. A part of this study was conducted using the facilities in the DASH/FBAS at RISH, Kyoto University, and the NMR spectrometer in JURC at ICR, Kyoto University.

Author information

Authors and Affiliations

Authors

Contributions

VR, TD, and MO designed the research; VR performed the experiments; VR, YT, MY, and TU carried out lignin analysis; VR, RS and MO analyzed the RNA-seq data; VR, TD, and MO wrote the manuscript and YT and TU helped the manuscript preparation.

Corresponding authors

Correspondence to Taku Demura or Misato Ohtani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46,503.4 kb)

Supplementary material 2 (XLSX 46.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, V., Tobimatsu, Y., Masaomi, Y. et al. Plant-specific Dof transcription factors VASCULAR-RELATED DOF1 and VASCULAR-RELATED DOF2 regulate vascular cell differentiation and lignin biosynthesis in Arabidopsis. Plant Mol Biol 104, 263–281 (2020). https://doi.org/10.1007/s11103-020-01040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01040-9

Keywords

Navigation