Skip to main content

Advertisement

Log in

Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

This review describes the occurrence and biosynthesis of trigonelline (N-methylnicotinic acid) and related nicotinic acid metabolites. High concentrations of trigonelline are found in seeds of coffee, and some members of the Fabaceae, while trace amounts occur in many other species. In contrast, the occurrence of other pyridine alkaloids derived from nicotinic acid is limited. Nicotinic acid, a precursor of the secondary pyridine metabolites, is derived from pyridine nucleotides. In planta, pyridine nucleotide biosynthesis de novo is initiated from aspartic acid. The degradation of NAD and its regeneration from the catabolites is called the pyridine nucleotide cycle (PNC). Isotopic labelling and enzymatic studies indicate a seven-component PNC VII pathway is the major route. All plants examined convert exogenous nicotinic acid to trigonelline and/or nicotinic acid N-glucoside (NaG). In general, NaG formation is restricted to ferns and selected orders of angiosperms, whereas other plants produce trigonelline. The biosynthesis of other pyridine alkaloids, of which many details remain to be resolved, is discussed briefly. The potential in planta roles of trigonelline, including detoxification, nyctinasty and host selection are discussed. Coffee beverage is the major food containing trigonelline and some vegetables also contain trigonelline. The possible effects of trigonelline on health mediated via hypoglycaemic, neuroprotective, anti-cancer, estrogenic, and antibacterial activities are reviewed. Finally, potential genetic manipulation of biosynthetic pathways to create trigonelline- and vitamin B3-rich plants and agricultural uses of trigonelline-rich genetically modified crops and trees are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DW:

Dry weight

FW:

Fresh weight

NaAD:

Nicotinic acid adenine dinucleotide

NaG:

Nicotinic acid N-glucoside

NaMN:

Nicotinic acid mononucleotide

NaMNAT:

Nicotinate mononucleotide adenylyltransferase

NaPRT:

Nicotinate phosphoribosyltransferase

NaR:

Nicotinic acid N-riboside

NMN:

Nicotinamide mononucleotide

NR:

Nicotinamide N-riboside

NMNAT:

Nicotinamide mononucleotide adenylyltransferase

PNC:

Pyridine nucleotide cycle

PRPP:

5-Phosphoribosyl-1-pyrophostate

QPRT:

Quinolinate phosphoribosyltransferase

SAM:

S-adenosyl-l-methionine

References

  • Adrian J, Frangne R (1991) Synthesis and availability of niacin in roasted coffee. Adv Exp Med Biol 289:49–59

    Article  CAS  PubMed  Google Scholar 

  • Allred KF, Yackley KM, Vanamala J, Allred CD (2009) Trigonelline is a novel phytoestrogen in coffee beans. J Nutr 139:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102

    Article  CAS  PubMed  Google Scholar 

  • Almeida AAP, Farah A, Silva DA, Nunan EA, Gloria B (2006) Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J Agric Food Chem 54:8738–8743

    Article  CAS  PubMed  Google Scholar 

  • Arditti J, Tarr JB (1979) Niacin biosynthesis in plants. Am J Bot 66:1105–1113

    Article  CAS  Google Scholar 

  • Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S, Schaefer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:4825–4835

    Article  CAS  PubMed  Google Scholar 

  • Ashihara H (2008) Trigonelline (N-methylnicotinic acid) biosynthesis and its biological role in plants. Nat Prod Commun 3:1423–1428

    CAS  Google Scholar 

  • Ashihara H (2014) Coffee plant biochemistry: trigonelline biosynthesis in Coffea arabica and Coffea canephora. In: Preedy VR (ed) Coffee in health and disease prevention. Elsevier, Amsterdam

  • Ashihara H, Crozier A (1999) Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. In: Callow JA (ed) Advances in botanical research, vol 30. Academic Press, Burlington, pp 117–205

    Google Scholar 

  • Ashihara H, Deng WW (2012) Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism. J Plant Res 125:781–791

    Article  CAS  PubMed  Google Scholar 

  • Ashihara H, Watanabe S (2014) Accumulation and function of trigonelline in non-leguminous plants. Nat Prod Commun 9:795–798

  • Ashihara H, Stasolla C, Yin Y, Loukanina N, Thorpe TA (2005) De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells. Plant Sci 169:107–114

    Article  CAS  Google Scholar 

  • Ashihara H, Luit B, Belmonte M, Stasolla C (2008) Metabolism of nicotinamide, adenine and inosine in developing microspore-derived canola (Brassica napus) embryos. Plant Physiol Biochem 46:752–759

    Article  CAS  PubMed  Google Scholar 

  • Ashihara H, Yin Y, Deng WW, Watanabe S (2010) Pyridine salvage and nicotinic acid conjugate synthesis in leaves of mangrove species. Phytochemistry 71:47–53

    Article  CAS  PubMed  Google Scholar 

  • Ashihara H, Deng WW, Nagai C (2011a) Trigonelline biosynthesis and the pyridine nucleotide cycle in Coffea arabica fruits: metabolic fate of [carboxyl-14C]nicotinic acid riboside. Phytochem Lett 4:235–239

    Article  CAS  Google Scholar 

  • Ashihara H, Kato M, Crozier A (2011b) Distribution, biosynthesis and catabolism of methylxanthines in plants. In: Fredholm BB (ed) Methylxanthines (Handbook of experimental pharmacology). Springer, New York, pp 11–31

  • Ashihara H, Ogita S, Crozier A (2011c) Purine alkaloid metabolism. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology. Wiley, Chichester, UK, pp 163–189

    Chapter  Google Scholar 

  • Ashihara H, Yin Y, Watanabe S (2011d) Nicotinamide metabolism in ferns: formation of nicotinic acid glucoside. Plant Physiol Biochem 49:275–279

    Article  CAS  PubMed  Google Scholar 

  • Ashihara H, Yin Y, Katahira R, Watanabe S, Mimura T, Sasamoto H (2012) Comparison of the formation of nicotinic acid conjugates in leaves of different plant species. Plant Physiol Biochem 60:190–195

    Article  CAS  PubMed  Google Scholar 

  • Ashihara H, Yokota T, Crozier A (2013) Biosynthesis and catabolism of purine alkaloids. In: Nathalie G-Gh (ed) Advances in botanical research, vol 68. Academic Press, Burlington, pp 111–138

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Barz W (1985) Metabolism and degradation of nicotinic acid in plant cell cultures. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 186–195

    Chapter  Google Scholar 

  • Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32:12–19

    Article  CAS  PubMed  Google Scholar 

  • Berglund T (1994) Nicotinamide, a missing link in the early stress response in eukaryotic cells: a hypothesis with special reference to oxidative stress in plants. FEBS Lett 351:145–149

    Article  CAS  PubMed  Google Scholar 

  • Berglund T, Kalbin G, Strid A, Rydstrom J, Ohlsson AB (1996) UV-B- and oxidative stress-induced increase in nicotinamide and trigonelline and inhibition of defensive metabolism induction by poly (ADP-ribose) polymerase inhibitor in plant tissue. FEBS Lett 380:188–193

    Article  CAS  PubMed  Google Scholar 

  • Bertrand B, Guyot B, Anthony F, Lashermes P (2003) Impact of the Coffea canephora gene introgression on beverage quality of C. arabica. Theor Appl Genet 107:387–394

    Article  CAS  PubMed  Google Scholar 

  • Bessman MJ, Frick DN, O’Handley SF (1996) The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271:25059–25062

    Article  CAS  PubMed  Google Scholar 

  • Bieganowski P, Brenner C (2004) Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a preiss-handler independent route to NAD+ in fungi and humans. Cell 117:495–502

    Article  CAS  PubMed  Google Scholar 

  • Blunden G, Patel AV, Armstrong N, Romero MA, Meléndez P (2005) Betaine distribution in angiosperms. Biochem Syst Ecol 33:904–920

    Article  CAS  Google Scholar 

  • Boivin C, Camut S, Malpica CA, Truchet G, Rosenberg C (1990) Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell 2:1157–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boivin C, Barran LR, Malpica CA, Rosenberg C (1991) Genetic analysis of a region of the Rhizobium meliloti pSym plasmid specifying catabolism of trigonelline, a secondary metabolite present in legumes. J Bacteriol 173:2809–2817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bray L, Chriqui D, Gloux K, Le Rudulier D, Meyer M, Peduzzi J (1991) Betaines and free amino acids in salt stressed vitroplants and winter resting buds of Populus trichocarpa x deltoides. Physiol Plant 83:136–143

    Article  CAS  Google Scholar 

  • Briggs AG, Bent AF (2011) Poly(ADP-ribosyl)ation in plants. Trends Plant Sci 16:372–380

    Article  CAS  PubMed  Google Scholar 

  • Casal S, Beatriz Oliveira M, Ferreira MA (2000) HPLC/diode-array applied to the thermal degradation of trigonelline, nicotinic acid and caffeine in coffee. Food Chem 68:481–485

    Article  CAS  Google Scholar 

  • Charrier A, Berthaud J (1985) Botanical classification of coffee. In: Clifford MN, Willson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 13–47

    Chapter  Google Scholar 

  • Chen X, Wood AJ (2004) Purification and characterization of S-adenosyl-l-methionine nicotinic acid-N-methyltransferase from leaves of Glycine max. Biol Plant 48:531–535

    Article  CAS  Google Scholar 

  • Cho Y, Lightfoot DA, Wood AJ (1999) Trigonelline concentrations in salt stressed leaves of cultivated Glycine max. Phytochemistry 52:1235–1238

    Article  CAS  Google Scholar 

  • Clifford MN (1985) Chemical and physical aspects of green coffee and coffee products. In: Clifford MN, Willson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm, London, pp 305–374

    Chapter  Google Scholar 

  • Corol DT, Ravel C, Raksegi M, Bedo Z, Charmet G, Beale MH, Shewry PR, Ward JL (2012) Effects of genotype and environment on the contents of betaine, choline, and trigonelline in cereal grains. J Agric Food Chem 60:471–481

    Article  CAS  Google Scholar 

  • Daglia M, Tarsi R, Papetti A, Grisoli P, Dacarro C, Pruzzo C, Gazzani G (2002) Anti-adhesive effect of green and roasted coffee on Streptococcus mutans’ adhesive properties on saliva-coated hydroxyapatite beads. J Agric Food Chem 50:1225–1229

    Article  CAS  PubMed  Google Scholar 

  • Dawson RF, Christman DR, Anderson RC (1953) Alkaloid biogenesis. IV. The Non-availability of nicotinic acid-carboxyl-C14 and its ethyl ester for nicotine biosynthesis. J Amer Chem Soc 75:5114–5116

    Article  CAS  Google Scholar 

  • DeBoer K, Lye J, Aitken C, Su A, Hamill J (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299–312

    Article  CAS  PubMed  Google Scholar 

  • Dobrzanska M, Szurmak B, Wyslouch-Cieszynska A, Kraszewska E (2002) Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana. J Biol Chem 277:50482–50486

    Article  CAS  PubMed  Google Scholar 

  • Dulyaninova NG, Podlepa EM, Toulokhonova LV, Bykhovsky VY (2000) Salvage pathway for NAD biosynthesis in Brevibacterium ammoniagenes: regulatory properties of triphosphate-dependent nicotinate phosphoribosyltransferase. Biochim Biophys Acta 1478:211–220

    Article  CAS  PubMed  Google Scholar 

  • Evans LS, Tramontano WA (1981) Is trigonelline a plant hormone pea seedlings? Am J Bot 68:1282–1289

    Article  CAS  Google Scholar 

  • Evans LS, Almeida MS, Lynn DG, Nakanishi K (1979) Chemical characterization of a hormone that promotes cell arrest in G2 in complex tissues. Science 203:1122–1123

    Article  CAS  PubMed  Google Scholar 

  • Francis D, Sorrell D (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12

    Article  CAS  Google Scholar 

  • Friesen JB, Leete E (1990) Nicotine synthase-an enzyme from nicotiana species which catalyzes the formation of (S)-nicotine from nicotinic acid and 1-methyl-δ’-pyrrolinium chloride. Tetrahedron Lett 31:6295–6298

    Article  CAS  Google Scholar 

  • Frost GM, Yang KS, Waller GR (1967) Nicotinamide adenine dinucleotide as a precursor of nicotine in Nicotiana rustica L. J Biol Chem 242:887–888

    CAS  PubMed  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    Article  CAS  PubMed  Google Scholar 

  • Fu P, Robinson T (1970) Pyridinium oxidases in the family Euphorbiaceae. Phytochemistry 9:2443–2446

    Article  CAS  Google Scholar 

  • Fu P, Robinson T (1972) Isolation and characterization of pyridinium oxidase B. Phytochemistry 11:95–103

    Article  CAS  Google Scholar 

  • Furukawa M, Makino M, Uchiyama T, Ishimi K, Ichinohe Y, Fujimoto Y (2002) Sesquiterpene pyridine alkaloids from Hippocratea excelsa. Phytochemistry 59:767–777

    Article  CAS  PubMed  Google Scholar 

  • Gaur V, Bodhankar L, Mohan V, Thakurdesai PA (2013) Neurobehavioral assessment of hydroalcoholic extract of Trigonella foenum-graecum seeds in rodent models of Parkinson’s disease. Pharm Biol 51:550–557

    Article  CAS  PubMed  Google Scholar 

  • Gholson RK (1966) The pyridine nucleotide cycle. Nature 212:933–935

    Article  CAS  PubMed  Google Scholar 

  • Goldmann A, Boivin C, Fleury V, Message B, Lecoeur L, Maille M, Tepfer D (1991) Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol Plant Microbe Interact 4:571–578

    Article  CAS  PubMed  Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, Oksman-Caldentey K-M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Nat Acad Sci USA 100:8595–8600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffith T, Hellman KP, Byerrum RU (1962) Studies on the biosynthesis of the pyridine ring of nicotine. Biochemistry 1:336–340

    Article  CAS  PubMed  Google Scholar 

  • Gustafson FG (1949) Tryptophane as an intermediate in the synthesis of nicotinic acid by green plants. Science 110:279–280

    Article  CAS  PubMed  Google Scholar 

  • Hanson AD, Rivoal J, Burnet M, Rathinasabapathi B (1995) Biosynthesis of quaternary ammonium and tertiary sulphonium compounds in response to water deficit. In: Smirnoff N (ed) Environment and Plant Metabolism: flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 189–198

    Google Scholar 

  • Harborne JB, Turner BL (1984) Plant Chemosystematics. Academic Press, London

    Google Scholar 

  • Hashida SN, Takahashi H, Kawai-Yamada M, Uchimiya H (2007) Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth. Plant J 49:694–703

    Article  CAS  PubMed  Google Scholar 

  • Hesse M (2002) Alkaloids nature’s curse or blessing? Wiley-VCH, New York

  • Heuser F, Schroer K, Lütz S, Bringer-Meyer S, Sahm H (2007) Enhancement of the NAD(P)(H) pool in Escherichia coli for biotransformation. Eng Life Sci 7:343–353

    Article  CAS  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirakawa N, Okauchi R, Miura Y, Yagasaki K (2005) Anti-invasive activity of niacin and trigonelline against cancer cells. Biosci Biotechnol Biochem 69:653–658

    Article  CAS  PubMed  Google Scholar 

  • Höhl U, Upmeier B, Barz W (1988) Growth and nicotinate biotransformation in batch cultured and airlift fermenter grown soybean cell suspension cultures. Appl Microbiol Biotechnol 28:319–323

    Article  Google Scholar 

  • Hosokawa Y, Mitchell E, Gholson RK (1983) Higher plants contain L-asparate oxidase, the first enzyme of the Escherichia coli quinolinate synthetase system. Biochem Biophys Res Commun 111:188–193

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CY, Santell RC, Haslam SZ, Helferich WG (1998) Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res 58:3833–3838 Erratum in: Cancer Res 59:1388

  • Hunt L, Lerner F, Ziegler M (2004) NAD—new roles in signalling and gene regulation in plants. New Phytol 163:31–44

    Article  CAS  Google Scholar 

  • Imai T (1973) Purification and properties of nicotinamide mononucleotide amidohydrolase from Azotobacter vinelandii. J Biochem 73:139–153

    CAS  PubMed  Google Scholar 

  • Imai T (1979) Isolation and properties of a glycohydrolase specific for nicotinamide mononucleotide from Azotobacter vinelandii. J Biochem 85:887–899

    CAS  PubMed  Google Scholar 

  • Imai T, Anderson BM (1987) Metabolism of nicotinamide mononucleotide in beef liver. Arch Biochem Biophys 254:241–252

    Article  CAS  PubMed  Google Scholar 

  • Iyer RS, Pathak B, Bose A (1956) Gentianine from an Indian medicinal plant. Naturwissenschaften 43:251–252

    Article  Google Scholar 

  • Jackanicz TM, Byerrum RU (1966) Incorporation of aspartate and malate into the pyridine ring of nicotine. J Biol Chem 241:1296–1299

    CAS  PubMed  Google Scholar 

  • Jahns E (1891) Über die Alkaloide der Arekanuß. Arch Pharm 229:669–707

    Article  Google Scholar 

  • Jakoby WB, Ziegler DM (1990) The enzymes of detoxication. J Biol Chem 265:20715–20718

    CAS  PubMed  Google Scholar 

  • Jambunathan N, Mahalingam R (2006) Analysis of Arabidopsis Growth Factor Gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224:1–11

    Article  CAS  PubMed  Google Scholar 

  • Jiménez JI, Canales Á, Jiménez-Barbero J, Ginalski K, Rychlewski L, García JL, Díaz E (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Nat Acad Sci USA 105:11329–11334

    Article  PubMed Central  PubMed  Google Scholar 

  • Johns E (1885) Ueber die alkaloide des bockshornsamens. Ber Deut Chem Ges 18:2518–2523

    Article  Google Scholar 

  • Johnson RD, Waller GR (1974) The relationship of the pyridine nucleotide cycle to ricinine biosynthesis in Ricinus Communis. Phytochemistry 13:1493–1500

    Article  CAS  Google Scholar 

  • Joshi JG, Handler P (1960) Biosynthesis of trigonelline. J Biol Chem 235:2981–2983

    CAS  PubMed  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287–298

    Article  CAS  PubMed  Google Scholar 

  • Kalbin G, Ohlsson AB, Berglund T, Rydström J, Strid A (1997) Ultraviolet-B-radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. Eur J Biochem 249:465–472

    Article  CAS  PubMed  Google Scholar 

  • Katahira R, Ashihara H (2009) Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.). Planta 231:35–42

    Article  CAS  PubMed  Google Scholar 

  • Katoh A, Hashimoto T (2004) Molecular biology of pyridine nucleotide and nicotine biosynthesis. Front Biosci 9:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 141:851–857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koshiro Y, Zheng XQ, Wang M, Nagai C, Ashihara H (2006) Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Sci 171:242–250

    Article  CAS  Google Scholar 

  • Koster S, Upmeier B, Komossa D, Barz W (1989) Nicotinic acid conjugation in plants and plant cell cultures of potato (Solanum tuberosum). Z Naturforsch 44c:623–628

  • Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley TP (2003) NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol 10:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Ky CL, Louarn J, Dussert S, Guyot B, Hamon S, Noirot M (2001) Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem 75:223–230

    Article  CAS  Google Scholar 

  • Lamartiniere CA, Moore JB, Brown NM, Thompson R, Hardin MJ, Barnes S (1995) Genistein suppresses mammary cancer in rats. Carcinogenesis 16:2833–2840

    Article  CAS  PubMed  Google Scholar 

  • Lang R, Wahl A, Skurk T, Yagar EF, Schmiech L, Eggers R, Hauner H, Hofmann T (2010) Development of a hydrophilic liquid interaction chromatography-high-performance liquid chromatography-tandem mass spectrometry based stable isotope dilution analysis and pharmacokinetic studies on bioactive pyridines in human plasma and urine after coffee consumption. Anal Chem 82:1486–1497

    Article  CAS  PubMed  Google Scholar 

  • Lang R, Dieminger N, Beusch A, Lee YM, Dunkel A, Suess B, Skurk T, Wahl A, Hauner H, Hofmann T (2013) Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal Bioanal Chem 405:8487–8503

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    Article  CAS  Google Scholar 

  • Leete E (1978) Stereochemistry of the reduction of nicotinic acid when it serves as a precursor of anatabine. J Chem Soc Chem Commun 610–611

  • Leete E, Liu YY (1973) Metabolism of [2-3H]- and [6-3H]-nicotinic acid in intact Nicotiana tabacum plants. Phytochemistry 12:593–596

    Article  CAS  Google Scholar 

  • Leete E, Slattery SA (1976) Incorporation of [2-14C]- and [6-14C]nicotinic acid into the tobacco alkaloids. Biosynthesis of anatabine and α, β-dipyridyl. J Am Chem Soc 98:6326–6330

    Article  CAS  PubMed  Google Scholar 

  • Mann DF, Byerrum RU (1974a) Quinolinic acid phosphoribosyltransferase from castor bean endosperm. I. Purification and characterization. J Biol Chem 249:6817–6823

    CAS  PubMed  Google Scholar 

  • Mann DF, Byerrum RU (1974b) Activation of the de novo pathway for pyridine nucleotide biosynthesis prior to ricinine biosynthesis in caster beans. Plant Physiol 53:603–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mata R, Calzada F, Díaz E, Toscano RA (1990) Chemical studies on Mexican plants used in traditional medicine, XV. Sesquiterpene evoninoate alkaloids from Hippocratea excelsa. J Nat Prod 53:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Ashihara H (2008) Nicotinate riboside salvage in plants: presence of nicotinate riboside kinase in mungbean seedlings. Plant Physiol Biochem 46:104–108

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Yin Y, Yamanaka K, Iwasaki M, Ashihara H (2007) Metabolic fate of nicotinamide in higher plants. Physiol Plant 131:191–200

    CAS  PubMed  Google Scholar 

  • Mazzafera P (1991) Trigonelline in coffee. Phytochemistry 30:2309–2310

    Article  CAS  Google Scholar 

  • Mazzuca S, Bitonti MB, Innocenti AM, Francis D (2000) Inactivation of DNA replication origins by the cell cycle regulator, trigonelline, in root meristems of Lactuca sativa. Planta 211:127–132

    Article  CAS  PubMed  Google Scholar 

  • Minorsky PV (2002) Trigonelline: a diverse regulator in plants. Plant Physiol 128:7–8

    Article  PubMed Central  CAS  Google Scholar 

  • Mizusaki S, Tanabe Y, Kisaki T, Tamaki E (1970) Metabolism of nicotinic acid in tobacco plants. Phytochemistry 9:549–554

    Article  CAS  Google Scholar 

  • Moat AG, Foster JW (1987) Biosynthesis and salvage pathways of pyridine nucleotides. In: Dolphin D, Avramovic O, Poulson R (eds) Pyridine nucleotide coenzymes. Chemical, biochemical, and medical aspects, part B. Wiley, New York, pp 1–24

  • Nakayama T, Honda K (2004) Chemical basis for differential acceptance of two sympatric rutaceous plants by ovipositing females of a swallowtail butterfly, Papilio polytes (Lepidoptera, Papilionidae). Chemoecology 14:199–205

    Article  CAS  Google Scholar 

  • Narayana Murthy UM, Ollagnier-de-Choudens S, Sanakis Y, Abdel-Ghany SE, Rousset C, Ye H, Fontecave M, Pilon-Smits EAH, Pilon M (2007) Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and NAD synthesis. J Biol Chem 282:18254–18264

    Article  Google Scholar 

  • Nasu S, Wicks FD, Gholson RK (1982) L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase. J Biol Chem 257:626–632

    CAS  PubMed  Google Scholar 

  • Nishitani H, Yamada Y, Ohshima N, Okumura K, Taguchi H (1995) Identification of N-(β-D-Glucopyranosyl)nicotinic acid as a major metabolite from niacin in cultured tobacco cells. Biosci Biotechnol Biochem 59:1336–1338

    Article  CAS  Google Scholar 

  • Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Hager J, Li S (2011) Biosynthesis of NAD and its manipulation in plants. In: Fabrice R, Roland D (eds) Advances in botanical research. Academic Press, Burlington, pp 153–201

    Google Scholar 

  • Ogawa T, Ueda Y, Yoshimura K, Shigeoka S (2005) Comprehensive analysis of cytosolic Nudix hydrolases in Arabidopsis thaliana. J Biol Chem 280:25277–25283

    Article  CAS  PubMed  Google Scholar 

  • Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutation Res/Rev Mutation Res 659:31–39

    Article  CAS  Google Scholar 

  • Pailer M, Libiseller R (1962) Über Evonymus-Alkaloide, 1. Mitt.: Zur Reindarstellung und Konstitution des Evonins (aus Evonymus europaea L.). Monatsh Chem 93:403–416

    Article  CAS  Google Scholar 

  • Petracco M (2005) Our everyday cup of coffee: the chemistry behind its magic. J Chem Educ 82:1161–1167

    Article  CAS  Google Scholar 

  • Preiss J, Handler P (1958) Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem 233:493–500

    CAS  PubMed  Google Scholar 

  • Qiu YL, Palmer JD (1999) Phylogeny of early land plants: insights from genes and genomes. Trend Plant Sci 4:26–30

    Article  Google Scholar 

  • Radwan SS, Kokate CK (1980) Production of higher levels of trigonelline by cell cultures of Trigonella foenum-graecum than by the differentiated plant. Planta 147:340–344

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran LR, Aspinall D, Jones GP, Paleg LG (2001) Stress metabolism. IX. Effect of salt stress on trigonelline accumulation in tomato. Can J Plant Sci 81:487–498

    Article  CAS  Google Scholar 

  • Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763

    Article  CAS  PubMed  Google Scholar 

  • Robinson T (1965) Enzymes of alkaloid biosynthesis—I: enzymatic oxidation of 1-methylnicotinonitrile. Phytochemistry 4:67–74

    Article  CAS  Google Scholar 

  • Rongvaux A, Andris F, Van Gool F, Leo O (2003) Reconstructing eukaryotic NAD metabolism. BioEssays 25:683–690

    Article  CAS  PubMed  Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480

    Article  CAS  Google Scholar 

  • Sakan T, Fujino A, Murai F, Butsugan Y, Suzui A (1959) On the structure of actinidine and matatabilactone, the effective components of Actinidia polygama. Bull Chem Soc Jpn 32:315–316

    Article  CAS  Google Scholar 

  • Sasamoto H, Ashihara H (2014) Effect of nicotinic acid, nicotinamide and trigonelline on the proliferation of lettuce cells derived from protoplasts. Phytochem Lett 7:38–41

    Article  CAS  Google Scholar 

  • Schippers JHM, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP (2008) The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. Plant Cell 20:2909–2925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scott TA, Glynn JP (1967) The incorporation of [2,3,7-14C] nicotinic acid into nicotine by Nicotiana tabacum. Phytochemistry 6:505–510

    Article  CAS  Google Scholar 

  • Shimizu MM, Mazzafera P (2000) A role for trigonelline during imbibition and germination of coffee seeds. Plant Biol 2:605–611

    Article  CAS  Google Scholar 

  • Shoji T, Hashimoto T (2011) Nicotine biosynthesis. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology. Wiley, Chichester, pp 191–216

    Chapter  Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–3409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinclair SJ, Murphy KJ, Birch CD, Hamill JD (2000) Molecular characterization of quinolinate phosphoribosyltransferase (QPRtase) in Nicotiana. Plant Mol Biol 44:603–617

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Vrishni S, Singh BK, Rahman I, Kakkar P (2010) Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res 44:1267–1288

    Article  CAS  PubMed  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Google Scholar 

  • Stadler RH, Varga N, Hau J, Arce Vera F, Welti DH (2002) Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline. J Agric Food Chem 50:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  CAS  PubMed  Google Scholar 

  • Suzuki-Yamamoto M, Mimura T, Ashihara H (2006) Effect of short-term salt stress on the metabolic profiles of pyrimidine, purine and pyridine nucleotides in cultured cells of the mangrove tree, Bruguiera sexangula. Physiol Plant 128:405–414

    Article  CAS  Google Scholar 

  • Taguchi H, Shimabayashi Y (1983) Findings of trigonelline demethylating enzyme activity in various organisms and some properties of the enzyme from hog liver. Biochem Biophys Res Commun 113:569–574

    Article  CAS  PubMed  Google Scholar 

  • Taguchi H, Sakaguchi M, Shimabayashi Y (1985) Trigonelline content in coffee beans and the thermal conversion of trigonelline into nicotinic acid during the roasting of coffee beans. Agric Biol Chem 49:3467–3471

    Article  CAS  Google Scholar 

  • Taguchi H, Sakaguchi M, Shimabayashi Y (1986) Contents of quinolinic acid, trigonelline and N1-methylnicotinamide in various foods and thermal conversion of these compounds into nicotinic acid and nicotinamide (in Japanese). Vitamins (Japan) 60:537–546

    CAS  Google Scholar 

  • Taguchi H, Nishitani H, Okumura K, Shimabayashi Y, Iwai K (1989) Biosynthesis and metabolism of trigonelline in Lemna paucicostata 151. Agric Biol Chem 53:2867–2871

    Article  CAS  Google Scholar 

  • Taguchi H, Sasatani K, Nishitani H, Okumura K (1997) Finding of UDP-glucose: nicotinic acid-N-glucosyltransferase activity in cultured tobacco cells and its properties. Biosci Biotechnol Biochem 61:720–722

    Article  CAS  Google Scholar 

  • Tarr JB, Arditti J (1982) Niacin biosynthesis in seedlings of Zea mays. Plant Physiol 69:553–556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • The Angiosperm Phylogeny G (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linnean Soc 161:105–121

    Article  Google Scholar 

  • Tohoda C, Nakamura N, Komatsu K, Hattori M (1999) Trigonelline-induced neurit outgrowth in human neuroplastoma SK-N-SH cells. Biol Pharm Bull 22:679–682

    Article  Google Scholar 

  • Tohoda C, Kuboyama T, Komatsu K (2005) Search for natural products related to regeneration of neuronal network. Neurosignals 14:34–45

    Article  CAS  Google Scholar 

  • Tomlinson PB (1994) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Tramontano WA, Jouve D (1997) Trigonelline accumulation in salt-stressed legumes and the role of other osmoregulators as cell cycle control agents. Phytochemistry 44:1037–1040

    Article  CAS  Google Scholar 

  • Tramontano WA, Hartnett CM, Lynn DG, Evans LS (1982) Relationship between trigonelline concentration and promotion of cell arrest in G2 in cultured roots of Pisum sativum. Phytochemistry 21:1201–1206

    Article  CAS  Google Scholar 

  • Tramontano WA, Lynn DG, Evans LS (1983) Trigonelline, nicotinic acid and nicotinamide in seedlings of Pisum sativum. Phytochemistry 22:673–678

    Article  CAS  Google Scholar 

  • Tramontano WA, Evans LS, McGinley PA (1985) Effects of cytokinins on promotion of cell arrest in G2 by trigonelline and trigonelline concentrations in cultured roots of Pisum sativum and Glycine max. Environ Exp Bot 25:83–88

    Article  CAS  Google Scholar 

  • Tramontano WA, McGinley PA, Ciancaglini EF, Evans LS (1986) A survey of trigonelline concentrations in dry seeds of the dicotyledoneae. Environ Exp Bot 26:197–205

    Article  CAS  Google Scholar 

  • Turner WL, Waller JC, Vanderbeld B, Snedden WA (2004) Cloning and characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoform. Plant Physiol 135:1243–1255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner WL, Waller JC, Snedden WA (2005) Identification, molecular cloning and functional characterization of a novel NADH kinase from Arabidopsis thaliana (thale cress). Biochem J 385:217–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ueda M, Niwa M, Yamamura S (1995) Trigonelline, a leaf-closing factor of the nyctinastic plant, Aeschynomene indica. Phytochemistry 39:817–819

    Article  CAS  Google Scholar 

  • Ueda M, Shigemori H, Sata N, Yamamura S (2000) The diversity of chemical substances controlling the nyctinastic leaf-movement in plants. Phytochemistry 53:39–44

    Article  CAS  PubMed  Google Scholar 

  • Upmeier B, Gross W, Koster S, Barz W (1988a) Purification and properties of S-adenosyl-l-methionine:nicotinic acid-N-methyltransferase from cell suspension cultures of Glycine max L. Arch Biochem Biophys 262:445–454

    Article  CAS  PubMed  Google Scholar 

  • Upmeier B, Thomzik JE, Barz W (1988b) Enzymatic studies on the reversible synthesis of nicotinic acid-N-glucoside in heterotrophic parsley cell suspension cultures. Z Naturforsch 43c:835–842

  • Upmeier B, Thomzik JE, Barz W (1988c) Nicotinic acid-N-glucoside in heterotrophic parsley cell suspension cultures. Phytochemistry 27:3489–3493

    Article  CAS  Google Scholar 

  • USDA Foreign Agricultural Service (2013) Coffee:World Markets and Trade. Circular series December 2013, pp 1–26

  • van der Veer E, Ho C, O’Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282:10841–10845

    Article  PubMed  CAS  Google Scholar 

  • Van Djik AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Damm RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32:1023–1025

    Article  CAS  Google Scholar 

  • Viani R, Horman I (1974) Thermal behavior of trigonelline. J Food Sci 39:1216–1217

    Article  CAS  Google Scholar 

  • Wada H, Shizuri Y, Yamada K, Hirata Y (1971) Evonine, an alkaloid obtained from Euonymus sieboldiana blume. I. Relationship of functional groups and partial structure. Tetrahedron Lett 12:2655–2658

    Article  Google Scholar 

  • Wagner KG, Backer AI (1992) Dynamics of nucleotides in plants studied on a cellular basis. In: Jeon KW, Friedlander M (eds) International Review of Cytology, vol 134. Academic Press, San Diego, pp 1–84

    Google Scholar 

  • Wagner R, Wagner KG (1985) The pyridine nucleotide cycle in tabacco. Enzyme activities for the de novo synthesis of NAD. Planta 165:532–537

    Article  CAS  PubMed  Google Scholar 

  • Wagner R, Feth F, Wagner KG (1986a) The pyridine-nucleotide cycle in tabacco: enzyme activities for the recycling of NAD. Planta 167:226–232

    Article  CAS  PubMed  Google Scholar 

  • Wagner R, Feth F, Wagner KG (1986b) Regulation in tobacco callus of enzyme activities of the nicotine pathway II. The pyridine-nucleotide cycle. Planta 168:408–413

    CAS  PubMed  Google Scholar 

  • Wagner R, Feth F, Wagner KG (1986c) The regulation of enzyme activities of the nicotine pathway in tobacco. Physiol Plant 68:667–672

    Article  CAS  Google Scholar 

  • Waller GR, Dermer OC (1981) Enzymology of alkaloid metabolism in plants and microorganisms. In: Conn EE (ed) The biochemistry of plants, a comprehensive treatise, vol 7., Secondary plant productsAcademic Press, New York, pp 317–402

    Google Scholar 

  • Waller GR, Ryhage R, Meyerson S (1966a) Mass spectrometry of biosynthetically labeled ricinine. Anal Biochem 16:277–286

    Article  CAS  PubMed  Google Scholar 

  • Waller GR, Yang KS, Gholson RK, Hadwiger LA, Chaykin S (1966b) The pyridine nucleotide cycle and its role in the biosynthesis of ricinine by Ricinus communis L. J Biol Chem 241:4411–4418

    CAS  PubMed  Google Scholar 

  • Wang G, Pichersky E (2007) Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Willeke U, Heeger V, Meise M, Neuhann H, Schindelmeiser I, Vordemfelde K, Barz W (1979) Mutually exclusive occurrence and metabolism of trigonelline and nicotinic acid arabinoside in plant cell cultures. Phytochemistry 18:105–110

    Article  CAS  Google Scholar 

  • Yang KS, Waller GR (1965) Biosynthesis of the pyridine ring of ricinine from quinolinic acid glycerol and aspartic acid. Phytochemistry 4:881–889

    Article  CAS  Google Scholar 

  • Yang KS, Gholson RK, Waller GR (1965) Studies on nicotine biosynthesis. J Am Chem Soc 87:4184–4188

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Matsui A, Sakuta M, Ashihara H (2008) Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures. Phytochemistry 69:2891–2898

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Sasamoto H, Ashihara H (2011) Pyridine metabolism and trigonelline synthesis in leaves of the mangrove legume trees Derris indica (Millettia pinnata) and Caesalpinia crista. Nat Prod Commun 6:1835–1838

    CAS  PubMed  Google Scholar 

  • Yoshinari O, Sato H, Igarashi K (2009) Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid on Goto-Kakizaki rats. Biosci Biotechnol Biochem 73:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Yuyama S (1999) Absorption of trigonelline from the small intestine of the specific pathogen-free (SPF) and germ-free (GF) rats in vivo. Adv Expe Med Biol 467:723–727

    Article  CAS  Google Scholar 

  • Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H (2003) Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and Implication in human NAD biosynthesis. J Biol Chem 278:13503–13511

    Article  CAS  PubMed  Google Scholar 

  • Zheng XQ, Ashihara H (2004) Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings. Plant Sci 166:807–813

    Article  CAS  Google Scholar 

  • Zheng XQ, Nagai C, Ashihara H (2004) Pyridine nucleotide cycle and trigonelline (N-methylnicotinic acid) synthesis in developing leaves and fruits of Coffea arabica. Physiol Plant 122:404–411

    Article  CAS  Google Scholar 

  • Zheng XQ, Hayashibe E, Ashihara H (2005) Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. J Exp Bot 56:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Zheng XQ, Matsui A, Ashihara H (2008) Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings. Phytochemistry 69:390–395

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhou S, Zeng S (2011) Experimental diabetes treated with trigonelline: effect on β-cell. Fundam Clin Pharm 27:279–287

    Article  CAS  Google Scholar 

  • Zrenner R, Ashihara H (2011) Nucleotide metabolism. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology. Wiley, Chichester, pp 135–162

    Chapter  Google Scholar 

Download references

Acknowledgments

Our research cited in this review was supported by the Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (Nos. 16570031 and 22510226) and by research grants from the Asahi Breweries Foundation, Japan to Hiroshi Ashihara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ashihara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashihara, H., Ludwig, I.A., Katahira, R. et al. Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health. Phytochem Rev 14, 765–798 (2015). https://doi.org/10.1007/s11101-014-9375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9375-z

Keywords

Navigation