Skip to main content
Log in

Water stress and abscisic acid treatments induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith

  • Original Papers
  • Published:
Photosynthetica

Abstract

Among various epiphytic ferns found in the Brazilian Atlantic Forest, we studied Vittaria lineata (L.) Smith (Polypodiopsida, Pteridaceae). Anatomical characterization of the leaf was carried out by light microscopy, fluorescence microscopy, and scanning electron microscopy. V. lineata possesses succulent leaves with two longitudinal furrows on the abaxial surface. We observed abundant stomata inside the furrows, glandular trichomes, paraphises, and sporangia. We examined malate concentrations in leaves, relative water content (RWC), photosynthetic pigments, and chlorophyll (Chl) a fluorescence in control, water-deficient, and abscisic acid (ABA)-treated plants. Plants subjected to drought stress (DS) and treated by exogenous ABA showed significant increase in the malate concentration, demonstrating nocturnal acidification. These findings suggest that V. lineata could change its mode of carbon fixation from C3 to the CAM pathway in response to drought. No significant changes in RWC were observed among treatments. Moreover, although plants subjected to stress treatments showed a significant decline in the contents of Chl a and b, the concentrations of carotenoids were stable. Photosynthetic parameters obtained from rapid light curves showed a significant decrease after DS and ABA treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

scaling constant for the height of the light curve

ABA:

abscisic acid

AL:

actinic light

Car:

carotenoids

DM:

dry mass

DS:

drought stress

ETR:

electron transport rate

ETRmax :

maximum electron transport rate

FM:

fresh mass

F0 :

minimum fluorescence

Fm :

maximum fluorescence

Fv :

variable fluorescence

Fm′:

minimum fluorescence of a light-adapted leaf

F′:

fluorescence yield of a light-adapted leaf

FLM:

fluorescence microscopy

Fv/Fm :

maximum photochemical efficiency of PSII

I:

irradiance

Iopt :

optimal irradiance for the saturation of photosynthesis

kw :

scaling constant for the x-axis of the light curve

LM:

light microscopy

OAA:

oxaloacetic acid

PAM:

pulse-amplitude modulation

P :

photosynthesis

PEG:

polyethylene glycol

PEPC:

phosphoenolpyruvate carboxylase

RLC:

rapid light curve

RWC:

relative water content

SEM:

scanning electron microscopy

SL:

saturating light pulses

TM:

turgid mass

ϕPSII :

actual photochemical efficiency of PSII

References

  • Ashraf, M.Y., Azmi, A.R., Khan, A.H., Ala, S.A.: Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat (Triticum aestivum L.). — Acta Physiol. Plant. 16: 185–191, 1994.

    CAS  Google Scholar 

  • Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. — Aust. J. Biol. Sci. 15: 413–428, 1962.

    Google Scholar 

  • Bennet, B.C.: Patchiness, diversity and abundance relationships of vascular epiphytes. — Selbyana 9: 70–75, 1986.

    Google Scholar 

  • Benzing, D.H.: The vegetative basis of vascular epiphytism. — Selbyana 9: 23–43, 1986.

    Google Scholar 

  • Benzing, D.H.: Vascular Epiphytes. Pp. 376. Cambridge Univ. Press, Cambridge 1990.

    Book  Google Scholar 

  • Bjorkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77-K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Bukatsch, F.: [Observations of double staining Astra bluesafranin.] — Mikrokosmos 61: 255, 1972. [In German]

    Google Scholar 

  • Brodribb, T.J., McAdam, S.A.M.: Passive origins of stomata control in vascular plants. — Science 331: 582–585, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Carter, J.P., Martin, C.E.: The occurrence of Crassulacean acid metabolism among epiphytes in a high-rainfall region of Costa Rica. — Selbyana 15: 104–106, 1994.

    Google Scholar 

  • Chu, C., Dai, Z.Y., Ku, M. S. B., Edwards, G. E.: Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. — Plant. Physiol. 93: 1253–1260, 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa, A. F.: [Pharmacognosy. Vol. 2.] Pp. 755. Fundação Calouste Gulbenkian, Lisboa 1982. [In Portuguese]

    Google Scholar 

  • Constable, J. V. H., Grace, J. B., Longstreth, D. J.: High carbon dioxide concentrations in aerenchyma of Typha latifolia. — Am. J. Bot. 79: 415–418. 1992.

    Article  Google Scholar 

  • Cushman, J. C., Borland, A. M.: Induction of Crassulacean acid metabolism by water limitation. — Plant Cell Environ. 25: 295–310, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Drew, M. C., He, C.J., Morgan, P. W.: Programmed cell death and aerenchyma formation in roots. — Trends Plant Sci. 5: 123–127, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Freschi, L., Rodrigues, M. A., Tiné, M. A. S., Mercier, H.: Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana. — J. Plant Physiol. 167: 1577–1583, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Genty, B., Briantais, J. M., Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta. 900: 87–92, 1989.

    Article  Google Scholar 

  • Gerlach, D.: [Botanical Microtechnology: An Introduction.] Pp. 311. Georg Thieme Verlag, Stuttgart 1984. [In German]

    Google Scholar 

  • Gloag, R. S., Ritchie, R. J., Chen, M. et al.: Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina. — Biochim. Biophys. Acta 1767: 127–135, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, H., Ong, B. L., Avadhani, P. N., Goh, C. J.: Recycling of respiratory CO2 during Crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. — Planta 179: 115–122, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Hew, C. S., Wong, Y. S., Photosynthesis and respiration of ferns in relation to their habitat. — Am. Fern J. 64: 40–48, 1974.

    Article  Google Scholar 

  • Hietz, P., Briones, O.: Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. — Oecologia 114: 305–316, 1998.

    Article  Google Scholar 

  • Hoagland, D. R., Arnon D.I.: The water culture method for growing plants without soil. — Calif. Exp. Stn. Circ. 347: 1–39, 1938.

    CAS  Google Scholar 

  • Horton, R. F.: Stomatal opening: the role of abscisic acid. — Can. J. Bot. 49: 583–585, 1971.

    Article  CAS  Google Scholar 

  • Jaing, Y., Yang, W. Y., Jiang, X., Qiaoyon, C.: Active oxygen demand and effect on chlorophyll degradation in rice seedling under osmotic stress. — Acta Bot. Sin. 36: 289–295, 1994.

    Google Scholar 

  • Jensen, W. A.: Botanical Histochemistry: Principles and Practice. Pp. 408. W. H. Freeman & Co, San Francisco 1962.

    Google Scholar 

  • Johansen, D. A.: Plant Microtechnique. Pp. 523. McGraw Hill Book, New York 1940.

    Google Scholar 

  • Kraus, J.E, Arduin, M.: [Basic Manual of Methods in Plant Morphology.] Pp. 198. Editora Universidade Rural. Seropédica, 1997. [In Portuguese]

  • Kluge, M., Avadhani, P. N., Goh, C. J.: Gas exchange and water relations in epiphytic tropical ferns. — In: Lüttge U. (ed.): Vascular Plants as Epiphytes. Ecological Studies 76. Pp. 87–109. Spriger-Verlag, Berlin 1989.

    Chapter  Google Scholar 

  • Kress, W. J.: A symposium: the biology of tropical epiphytes. — Selbyana 9: 1–22, 1986.

    Google Scholar 

  • Lichtenthaler, H. K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Method. Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Lüttge, U.: The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. — New Phytol. 125: 59–71, 1993.

    Article  Google Scholar 

  • Madison, M.: Vascular epiphytes: their systematic occurrence and salient features. — Selbyana 2: 1–13, 1977.

    Google Scholar 

  • Martin, S. L., Davis, R., Protti, P. et al.: The occurrence of crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae. — Int. J. Plant Sci. 166: 623–630, 2005.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G. N.: Chlorophyll fluorescence: A practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • McAdam, S. A. M., Brodribb, T. J.: Stomatal innovation and the rise of seed plants. — Ecol. Lett. 15: 1–8, 2012.

    Article  PubMed  Google Scholar 

  • Möllering, H.: L(-) malate. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 39–47, Vol 7. VHC Verlagsgesellschaft, Weinheim 1985.

    Google Scholar 

  • Neales, T. F, Hew, C. S.: Two types of carbon fixation in tropical orchids. — Planta 23: 303–306, 1975.

    Article  Google Scholar 

  • Nieder, J. Prosperí, J., Michaloud, G.: Epiphytes and their contribution to canopy diversity. — Plant Ecol. 153: 51–63, 2001.

    Article  Google Scholar 

  • Nimmo, H. G.: The regulation of phosphoenolpyruvate carboxylase in CAM plants. — Trends Plant Sci. 5: 75–80, 2000.

    Article  CAS  PubMed  Google Scholar 

  • N’soukpoé-Kossi, C.N., Ivanov, A.G., Veeranjaneyulu, K., Leblanc, R. M. Protective action of abscisic acid against the inhibition of photosynthesis of barley leaves by bisulphite. — Photosynthetica 36: 51–60, 1999.

    Article  Google Scholar 

  • O’Brien, T. P., Feder, N., McCully, M.: Polychromatic staining of plant cell walls by toluidine blue. — Protoplasma 59: 368–373, 1965.

    Article  Google Scholar 

  • Pedersen, O., Sand-Jensen, K.: Adaptations of submerged Lobelia dortmanna to aerial life form: morphology, carbon sources, and oxygen dynamics. — Oikos 65: 89–96, 1992.

    Article  Google Scholar 

  • Peltzer, D., Dreyer, E., Polle, A.: Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. — Plant Physiol. Bioch. 40: 141–150, 2002.

    Article  CAS  Google Scholar 

  • Pinhero, R. G., Rao, M. V., Paliyath, G. et al.: Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. — Plant Physiol. 114: 695–704, 1997.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prado, J.: [Reviews and monographs as a basis for analysis of diversity, as we know about our flora.] — In: Jardim, M. A. G., Bastos, M. N. C., Santos, J. U. M. (ed.): [Challenges of Brazilian Botany in the new Millennium: Inventory, Systematic and Conservation of the Plant Diversity.] Pp. 78–79. MPEG/UFRA/EMBRAPA, Belém 2003. [In Portuguese]

    Google Scholar 

  • Pryer, K. M., Schuettpelz, E., Wolf, P. G. et al.: Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. — Am. J. Bot. 91: 1582–1598, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ralph, P. J., Gademann, R.: Rapid light curves: a powerful tool to assess photosynthetic activity. — Aquat. Bot. 82: 222–237, 2005.

    Article  CAS  Google Scholar 

  • Rathinasabapathi, B.: Ferns represent untapped biodiversity for improving crops for enviromental stress tolerance. — New Phytol. 172: 385–390, 2006.

    Article  PubMed  Google Scholar 

  • Ravensberg, W. J., Hennipman, E.: The Pyrrosia species formerly referred to as Drymoglossum and Saxiglossum. — Leiden Bot. Ser. 9: 281–310, 1986.

    Google Scholar 

  • Reddy, A. R., Chaitanya, K. V., Vivekanandan, M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants. — J. Plant Physiol. 161: 1189–1202, 2004.

    Article  CAS  Google Scholar 

  • Ritchie, R. J.: Fitting light saturation curves measured using modulated fluorometry. — Photosynth. Res. 96: 201–215, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Runcie, J. W., Durako, M. J.: Among-shoot variability and leafspecific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. — Aquat. Bot. 80: 209–220, 2004.

    Article  CAS  Google Scholar 

  • Rut, G., Krupa, J., Miszalski, Z. et al.: Crassulacean acid metabolism in the epiphytic fern Platycerium bifurcatum. — Photosynthetica 46: 156–160, 2008.

    Article  CAS  Google Scholar 

  • Ruzin, S. E.: Plant Microtechnique and Microscopy. Pp. 322–322. Oxford University Press, New York 1999.

    Google Scholar 

  • Schreiber, U.: Pulse-amplitude (PAM) fluorometry and saturation pulse method. — In: Papageorgiou, G. and Govindjee (ed.): Chlorophyll a Fluorescence: a Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series. Pp. 279–319. Kluwer Academic Publishers, Dordrecht 1994.

    Google Scholar 

  • Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., Wolf, P. G. A classification for extant ferns. — Taxon 55: 705–731, 2006.

    Article  Google Scholar 

  • Sinclair, R.: Water relations of tropical epiphytes. III. Evidence for crassulacean acid metabolism. — J. Exp. Bot. 35: 1–7, 1984.

    Article  CAS  Google Scholar 

  • Tausz, M., Hietz, P., Briones, O.: The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species of a Mexican cloud forest. — Aust. J. Plant Physiol. 28: 775–783, 2001.

    CAS  Google Scholar 

  • Tryon, R. M., Tryon, A.F.: Ferns and Allied Plants with Special Reference to Tropical America. Pp. 857. Springer-Verlag, New York 1982.

    Book  Google Scholar 

  • Uphof, J. C. T.: Physiological anatomy of xerophytic Selaginellas. — New Phytol. 19: 101–131, 1920.

    Article  Google Scholar 

  • White, A. J., Critchley, C.: Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. — Photosynth. Res. 59: 63–72, 1999.

    Article  CAS  Google Scholar 

  • Winter, K., Wallace, B. J., Stocker, G. C., Roksandic, Z.: Crassulacean acid metabolism in Australian vascular epiphytes and some related species. — Oecologia 57: 129–141, 1983.

    Article  Google Scholar 

  • Wong, S. C., Hew, C. S.: Diffusive resistance, titratable acidity, and CO2 fixation in two tropical epiphytic ferns. — Am. Fern J. 66: 121–124, 1976.

    Article  Google Scholar 

  • Zar, J. H. Biostatistical Analysis. Pp. 718. Prentice Hall, New Jersey 1996.

    Google Scholar 

  • Zotz, G. How prevalent is crassulacean acid metabolism among vascular epiphytes? — Oecologia 138: 184–192, 2004.

    Article  PubMed  Google Scholar 

  • Zotz, G., Ziegler, H. The occurrence of crassulacean acid metabolism among vascular epiphytes from Central Panama. — New Phytol. 137: 223–229, 1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Minardi.

Additional information

Acknowledgments: The first authors would like to acknowledge CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the scholarship (Rede em Epífitas de Mata Atlântica: Sistemática, Ecologia E Conservação, CAPES, PNADB, 2009). Á.M. Randi and M. Santos would like to acknowledge CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the research grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minardi, B.D., Voytena, A.P.L., Santos, M. et al. Water stress and abscisic acid treatments induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith. Photosynthetica 52, 404–412 (2014). https://doi.org/10.1007/s11099-014-0047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0047-4

Additional key words

Navigation