Skip to main content

Gas Exchange and Water Relations in Epiphytic Tropical Ferns

  • Chapter
Vascular Plants as Epiphytes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 76))

Abstract

The abundance of epiphytes is a characteristic feature of the rich vegetation of the wet tropics. Among the epiphytic vascular plants ferns are quite frequent (Chaps. 2, 3 and 9). According to Holtum (1969), about half of the some 500 known fern species in Malaysia are epiphytes. Recently the ecophysiological problems linked with epiphytism are gaining increasing interest from plant scientists (Lüttge 1985; Lüttge et al. 1986a). It is the aim of this chapter to contribute to a better understanding of the ecophysiological implications of epiphytism in ferns. We will discuss recent results obtained by investigations in the laboratory as well as some in situ studies on tropical epiphytic ferns growing in their natural stands in Singapore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Black CK (1973) Photosynthetic carbon fixation in relation to net C02 uptake. Annu Rev Plant Physiol 24:253–286

    Article  CAS  Google Scholar 

  • Griffiths H, Lüttge U. Stimmel KH, Crook CE, Griffiths NM, Smith JAC (1986) Comparative ecophysiology of CAM and C, bromeliads. III. Environmental influences on C02 assimilation and transpiration. Plant Cell Environ 9:385–393

    Article  Google Scholar 

  • Griffiths H, Smith JAC, Lüttge U, Popp M, Cram WJ, Diaz M, Lee HSJ, Medina E, Schafer C, Stimmel KH (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. IV. Tillandsia flexuosa Sw. and Schomburgkia humboldtiana

    Google Scholar 

  • Reichb, epiphytic CAM plants. New Phytol. 111:273–283

    Google Scholar 

  • Hew CS, Wong YS (1974) Photosynthesis and respiration of ferns in relation to their habitat. Am Fern J 64:40–48

    Article  Google Scholar 

  • Holtum RE (1969) Plant life in Malaya. Longman, Singapore

    Google Scholar 

  • Keeley JE, Walker CM, Mathews RP (1983) Crassulacean acid metabolism in Isoetes bolanderi in high elevation oligotrophic lakes. Oecologia 58:63–69

    Article  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Ecological Studies Vol. 30, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kluge M, Friemert V, Ong BC, Brulfert J, Goh CJ (1989) In situ studies of crassulacean acid metabolism in Drymoglossum piloselloides, an epiphytic fern of the humid tropics. J Exp Bot 40 (in press)

    Google Scholar 

  • Lange OL, Medina E (1979) Stomata of the CAM plant Tillandsia recurvata respond directly to humidity. Oecologia 40:357–363

    Article  Google Scholar 

  • Lerman JC (1975) How to interpret variations in the carbon isotope ratio of plants:biologic and environmental effects. In:Marcelle R (ed) Environmental and biological control of photosynthesis. Dr. W. Junk by Publishers, The Hague, pp 323–336

    Chapter  Google Scholar 

  • Lüttge U (1985) Epiphyten:Evolution und Okophysiologie. Naturwissenschaften 72:557–566

    Article  Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand:crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiologieal work. New Phytol 106:593–629

    Article  Google Scholar 

  • Lüttge U, Nobel PS (1984) Day-night variations in malate concentration, osmotic pressure, and hydrostatic pressure in Cereus validus. Plant Physiol 75:804–807

    Article  PubMed  Google Scholar 

  • Lüttge U, Stimmel KH, Smith JAC, Griffiths H (1986a) Comparative ecophysiology of CAM and C3 bromeliads. II. Field measurements of gas exchange of CAM bromeliads in the humid tropics. Plant Cell Environ 9:377–383

    Article  Google Scholar 

  • Lüttge U, Ball E, Kluge M, Ong BL (1986b) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Veg 24:305–414

    Google Scholar 

  • Martin CE, Highley M, Wei-Zhong W (1988) The ecophysiological significance of C02 recycling via crassulacean acid metabolism in Talinum calycinum Engelm. (Portulacaceae). Plant Physiol 86:562–568

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. WH Freeman, San Francisco Ong BL (1986) A comparative study on the crassulacean acid metabolism in two tropical, epiphytic ferns:Drymoglossum piloselloides (L) Presl. and Pyrrosia longifolia (Burm) Morton. Doctor Thesis, Technical University Darmstadt (FRG )

    Google Scholar 

  • Ong BL, Kluge M, Friemert V (1986) Crassulacean acid metabolism in the epiphytic ferns Drymoglossum piloselloides and Pyrrosia longifolia:studies on the responses to environmental signals. Plant Cell Environ 9:547–557

    CAS  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism:a curiosity in context. Annu Rev Plant Physiol 29:379–414

    Article  CAS  Google Scholar 

  • Osmond CB, Holtum JAM (1981) Crassulacean acid metabolism. In:Stumpf PK, Cohn EE (eds) The biochemistry of plants, Vol. 8. Academic Press, New York

    Google Scholar 

  • Popp M, Kramer D, Lee H, Diaz M, Ziegler H, Lüttge U (1987) Crassulacean acid metabolism in tropical dicotyledonous trees of the genus Clusia. Trees 1:238–247

    Article  CAS  Google Scholar 

  • Schimper AFW (1888) Botanische Mitteilungen aus den Tropen. I I. Epiphytische Vegetation Amerikas. Fischer, Jena

    Google Scholar 

  • Schulze ED, Hall HE, Lange OL, Walz H (1982) A portable steady-state porometer for measuring the carbon dioxide and water vapour exchanges of leaves under natural conditions. Oecologia 53:141–145

    Article  Google Scholar 

  • Sinclair R (1983a) Water relations in tropical epiphytes:relationships between stomatal resistance, relative water content and the components of water potential. J Exp Bot 34:1652–1663

    Article  Google Scholar 

  • Sinclair R (1983b) Water relations in tropical epiphytes:performance during droughting. J Exp Bot 34:1664–1675

    Article  Google Scholar 

  • Smith JAC, Lüttge U (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoe daigremontiana. Planta 163:272–283

    Article  CAS  Google Scholar 

  • Smith JAC, Griffiths H, Lüttge U (1986a) Comparative ecophysiology of CAM and Q bromeliads. I. The ecology of the Bromeliaceae in Trinidad. Plant Cell Environ 9:359–376

    Article  Google Scholar 

  • Smith JAC, Griffiths H, Lüttge U, Crook CE, Griffiths NM, Stimmel KH (1986b) Comparative ecophysiology of CAM and C3 bromeliads. IV. Plant water relations. Plant Cell Environ 9:395–410

    Article  Google Scholar 

  • Sternberg O, Deniro MJ, Ting IP (1984) Carbon, hydrogen, and oxygen isotope ratios of cellulose from plants having intermediary photosynthetic modes. Plant Physiol 74:104–107

    Article  PubMed  CAS  Google Scholar 

  • von Willert DJ, Brinckmann E (1985) Kohlenstoff- und Wasserhaushalte von Sukkulenten arider Gebiete. Ber Dtsch Bot Ges 98:455–464

    Google Scholar 

  • von Willert DJ, Brinckmann E, Scheitler B, Eller BM (1985) Availability of water controls crassulacean acid metabolism in succulents of the Richtersveld (Namib Desert South Africa) Planta 164:44–55

    Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In:Barber J, Baker R (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–378

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Rocksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57:129–141

    Article  Google Scholar 

  • Winter K, Osmond CB, Hubick KT (1986a) Crassulacean acid metabolism in the shade. Studies on the epiphytic fern, Pyrrosia longifolia, and other rain forest species from Australia. Oecologia 68:224–230

    Article  Google Scholar 

  • Winter K, Schroppel-Meier G, Caldwell MM (1986b) Respiratory CO., as carbon source for nocturnal acid synthesis at high temperatures in three species exhibiting crassulacean acid metabolism. Plant Physiol 8:390–394

    Article  Google Scholar 

  • Wong YS, Hew CS (1976) Diffusive resistance, titratable acidity, and C02 fixation in two tropical epiphytic ferns. Am Fern J 66:121–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kluge, M., Avadhani, P.N., Goh, C.J. (1989). Gas Exchange and Water Relations in Epiphytic Tropical Ferns. In: Lüttge, U. (eds) Vascular Plants as Epiphytes. Ecological Studies, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74465-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74465-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74467-9

  • Online ISBN: 978-3-642-74465-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics