Skip to main content

Advertisement

Log in

Overcoming Glucocorticoid Resistances and Improving Antitumor Therapies: Lipid and Polymers Carriers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To improve chemotherapy protocols of lymphoid malignancies, by using polymeric and lipid microparticles as controlled delivery systems of dexamethasone, part of all combined chemotherapy protocols for its strong-inducing effect on malignant lymphoblasts.

Methods

Polymeric microparticles were prepared by the oil-in-water-emulsion cosolvent evaporation method, andlipid microparticles by spray drying. Their cytotoxic effects on GC-sensitive PC12 cells and GC-resistant PC3 cells were characterized by cell proliferation and apoptosis assays.

Results

Both elaboration methods rendered optimal-sized microparticles for parenteral administration with high drug loading. In vitro assays showed sustained dexamethasone release from polymeric microparticles over a month, whereas 100% dexamethasone release from lipid microparticles was achieved within 24 h. Similar PC12 cell death to that obtained with dexamethasone solution administered every 48 h was achieved with dexamethasone polymeric microparticles in 26-days assays. Dexamethasone solution and loaded polymeric microparticles induced apoptosis around 15.8 and 19.9%, respectively, after 2 days of incubation. Lipid microparticles increased further apoptosis induction in PC12 cells and, unlike dexamethasone solution and polymeric microparticles, showed antiproliferative effects on PC3 cells.

Conclusions

Dexamethasone polymeric microparticles constitute an alternative to current dexamethasone administration systems in combined chemotherapy, whereas dexamethasone lipid microparticles represent a potential tool to revert glucocorticoid resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ALL:

Acute lymphoblastic leukemia

ATCC:

American type culture collection

DCM:

Dichloromethane

Dex:

Dexamethasone

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethylsulfoxidel

DSC:

Differential scanning calorimetry

FACS:

Fluorescence-activated cell sorting

GCs:

Glucocorticoids

GR:

Glucocorticoids receptor

HPLC:

High performance liquid chromatography

MM:

Multiple myeloma

mTOR:

Mammalian target of the rapamicin

MTT:

Bromide (3-[4, 5-dimethyltiazol-2- yl]-2, 5-diphenyl)

OD:

Optical density

PAO:

Phenylarsine oxide

PBS:

Phosphate buffer solution

PI:

Polydispersity index

PpI:

Propidium iodide

PLGA:

Poly(lactic and glycolic) acid

PVA:

Polyvinyl alcohol

RPMI:

Oswell park memorial institute medium

SDmean :

Standard deviation of the mean diameter values

SEM:

Scanning electron microscopy

References

  1. Gu L, Zhou C, Liu H, Gao J, Li Q, Mu D, et al. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis. J Exp Clin Cancer Res. 2010;29:150–9.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hong D, Chen HX, Yu HK, Wang C, Deng HT, Lian QQ, et al. Quantitative proteomic analysis of dexamethasone-induced effects on osteoblast differentiation, proliferation, and apoptosis in MC3T3-E1 cells using SILAC. Osteoporos Int. 2011;22:2175–86.

    Article  CAS  PubMed  Google Scholar 

  3. Chung YJ, Lee JI, Chong S, Seok JW, Park SJ, Jang HW, et al. Anti-proliferative effect and action mechanism of dexamethasone in human medullary thyroid cancer cell line. Endocr Res. 2011;36(4):149–57.

    Article  CAS  PubMed  Google Scholar 

  4. Wang M, Jin Y, Yang YX, Zhao CY, Yang HY, Xu XF, et al. In vitro biodistribution, anti-inflammatory, and hepatoprotective effects of liver targeting dexamethasone acetate loaded nanoestructured lipid carrier system. Int J Nanomedicine. 2010;5:487–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66.

    Article  PubMed  Google Scholar 

  6. Rajkuma V, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11(1):29–37.

    Article  Google Scholar 

  7. Higgins SC, Pilkington GJ. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res. 2010;30:391–8.

    CAS  PubMed  Google Scholar 

  8. Polman JA, Welten JE, Bosch DS, Jonge RT, Balog J, Van Der Maarel SM, et al. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. Neuroscience. 2012;13:118–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Carlet M, Janjetovic K, Rainer J, Schmidt S, Panzer-Grümayer R, Mann G, et al. Expression, regulation and function ofphosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells. BMC Cancer. 2010;10:638–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Eberhart K, Rainer J, Bindreither D, Ritter I, Gnaiger E, Kofler R, et al. Glucocorticoid-induced alterations in mitochondrial membrane properties and respiration in childhood acute lymphoblastic leukemia. Biochim Biophys Acta. 1807;2011:719–25.

    Google Scholar 

  11. Nuutinena U, Ropponena A, Suorantaa S, Eevaa J, Erayb M, Pellinenc R, et al. Dexamethasone-induced apoptosis and up-regulation of Bim is dependent on glycogen synthase kinase-3. Leuk Res. 2009;33:1714–7.

    Article  Google Scholar 

  12. Dobos J, Kenessey I, Tímár J, Ladányi A. Glucocorticoid receptor expression and antiproliferative effect of dexamethasone on human melanoma cells. Pathol Oncol Res. 2011;17:729–34.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SJ, Hahn SK, Kim MJ, Kim DH, Lee YP. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release. 2005;104:323–35.

    Article  CAS  PubMed  Google Scholar 

  14. Yeh MK, Chen JL, Chiang CH, Chang ZY. The preparation of sustained release erytropoietin microparticle. J Microencapsul. 2007;24(1):82–93.

    Article  CAS  PubMed  Google Scholar 

  15. Blasi P, Schoubben A, Romano GV, Giovagnoli S, Di Michele A, Ricci M. Lipid nanoparticles for brain targeting II. Technological characterization. Colloids Surf B: Biointerfaces. 2013;110:130–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hickey T, Kreutzer D, Burgess DJ, Moussy F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials. 2002;23:1649–56.

    Article  CAS  PubMed  Google Scholar 

  17. Jaraswekin S, Prakongpan S, Bodmeier R. Effect of poly(lactide-co-glycolide) molecular weight on the release of dexamethasone sodium phosphate from microparticles. J Microencapsul. 2007;24(2):117–28.

    Article  CAS  PubMed  Google Scholar 

  18. Gómez-Gaete C, Tsapis N, Silva L, Bourgaux C, Besnard M, Bochot A, et al. Supramolecular organization and release properties of phospholipid-hyaluronan microparticles encapsulating dexamethasone. Eur J Pharm Biopharm. 2008;70:116–26.

    Article  PubMed  Google Scholar 

  19. Gómez-Gaete C, Tsapis N, Silva L, Bourgaux C, Besnard M, Bochot A, et al. Morphology, structure and supramolecular organization of hybrid 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine—hyaluronic acid microparticles prepared by spray drying. Eur J Pharm Sci. 2008;34:12–21.

    Article  PubMed  Google Scholar 

  20. Martín-Sabroso C, Tavares-Fernandes DF, Espada-García JI, Torres-Suárez AI. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: dexamethasone phosphate disodium microparticles. Int J Pharm. 2013;458:188–96.

    Article  PubMed  Google Scholar 

  21. Thote AJ, Chappell JT, Gupta RB. Reduction in the initial-burst release by surface crosslinking of PLGA microparticles containing hydrophilic or hydrophobic drugs. Drug Dev Ind Pharm. 2005;1:43–57.

    Article  Google Scholar 

  22. Anderson DJ, Michelson AM. Role of glucocorticoids in the chromaffin-neuron developmental decision. Int J Dev Neurosci. 1989;12:83–94.

    CAS  Google Scholar 

  23. Ebert SN, Balt SL, Hunter JPB, Gashler A, Sukhatme V, Wong DL. Egr-1 activation of rat adrenal phenylethanolamine N-methyltransferase gene. J Biol Chem. 1994;269:20885–98.

    CAS  PubMed  Google Scholar 

  24. Tischler AS, Perlman RL, Morse GM, Beth E. Glucocorticoids increase catecholamine synthesis and storage in PC 12 pheochromocytoma cell cultures. J Neurochem. 1983;40(2):364–70.

    Article  CAS  PubMed  Google Scholar 

  25. Kim KT, Park DH, Joh TH. Parallel up-regulation of catecholamine biosynthetic enzymes by dexamethasone in PC12 cells. J Neurochem. 1993;60:946–51.

    Article  CAS  PubMed  Google Scholar 

  26. Elhamdani A, Brown ME, Artalejo CR, Palfrey HC. Enhancement of the dense-core vesicle secretory cycle by Clucocorticoid Differenciation of PC12 cells: characteristics of rapid exocytosis and endocytosis. J Neurosci. 2000;20(7):2495–503.

    CAS  PubMed  Google Scholar 

  27. Green KN, Taylor SC, Smith IF, Peers C. Differencial coupling of voltage-gated Ca2+ channels to catecholamine from separate PC12 cell batches. Neurosci Lett. 2001;301:13–6.

    Article  CAS  PubMed  Google Scholar 

  28. Van Der Laan S, Sarabdjitsingh RA, Van Batenburg MS, Lachize SB, Li H, Dijkmans TF, et al. Chromatin inmunoprecipitation scanning identifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed glucocorticoid target gene in brain. J Neurochem. 2008;106:2515–23.

    Article  PubMed  Google Scholar 

  29. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investig Urol. 1979;17(1):16–23.

    CAS  Google Scholar 

  30. Yano A, Fujii Y, Iwai A, Kageyama Y, Kihara K. Glucocorticoids suppress tumor angiogenesis and In vivo growth of prostate cancer cells. Clin Cancer Res. 2006;12:3003–9.

    Article  CAS  PubMed  Google Scholar 

  31. Diaz-Prieto N, Herrera-Peco I, De Diego AM, Ruiz-Nuno A, Gallego-Sandin S, Lopez MG, et al. Bcl-2 mitigates Ca2+ entry and mitochondrial Ca2+ overload through downregulation of L-type Ca2+ channels in PC12 cells. Cell Calcium. 2008;44:339–52.

    Article  CAS  PubMed  Google Scholar 

  32. Le Visage C, Quaglia F, Dreux M, Ounnar S, Breton P, Bru N, et al. Novel microparticulate system made of poly(methylidene malonate 2.1.2). Biomaterials. 2001;22:2229–38.

    Article  PubMed  Google Scholar 

  33. Zolnik BS, Burgess DJ. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. J Control Relat. 2008;127:137–45.

    Article  CAS  Google Scholar 

  34. Butoescu N, Jordan O, Burdet P, Stadelmann P, Petri-Fink A, Hofmann H, et al. Dexamethasone-containing biodegradable superparamagnetic microparticles for intra-articular administration: physicochemical and magnetic properties, in vitro and in vivo drug release. Eur J Pharm Biopharm. 2009;72:529–38.

  35. Chen JL, Chiang CH, Yeh MK. The mechanism of surface-indented protein-loaded PLGA microparticle formation: the effects of salt (NaCl) on the solidificacion process. J Microencapsul. 2004;21(8):877–88.

    Article  CAS  PubMed  Google Scholar 

  36. Cho SW, Song SI, Choi YW. Effects of solvent selection and fabrication method on the characteristics of biodegradable Poly(lactide-co-glycolide) microspheres containg ovalbumin. Arch Pharm Res. 2000;23(4):385–90.

    Article  CAS  PubMed  Google Scholar 

  37. Kim HK, Park TG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotechnol Bioeng. 1999;65(6):659–66.

    Article  CAS  PubMed  Google Scholar 

  38. Maher PG, Roos YH, Fenelon MA. Physicochemical properties of spray dried nanoemulsions with varying final water and sugar contents. J Food Eng. 2014;126:113–9.

    Article  CAS  Google Scholar 

  39. Ingvarsson PT, Schmidt ST, Christensen D, Larsen NB, Hinrichs WL, Andersen P, et al. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01. J Control Release. 2013;167(3):256–64.

    Article  CAS  PubMed  Google Scholar 

  40. Yokoyama K, Okamoto H, Watanabe M, Suyama T, Mizushima Y. Development of a corticosteroid incorporated in lipid microspheres (liposteroid). Drugs Exp Clin Res. 1985;11(9):611–20.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We want to thank the Counseling of Education of the Community of Madrid and the European Social Fund through the Regional Plan of Scientific Research and Technological Innovation. This work was partially funded by the Research Group GR35/10 Santander-UCM, Group: Parenteral administration of drugs. We also thank the UCM Microscopy Research Support Centre for the valuable technical and professional assistance. AJMO is granted by Ministry of Economy and Competitiveness by the FPU Program (Ref. AP2009/0343).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. F. Cano-Abad or A. I. Torres-Suárez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Sabroso, C., Moreno-Ortega, A.J., Aparicio-Blanco, J. et al. Overcoming Glucocorticoid Resistances and Improving Antitumor Therapies: Lipid and Polymers Carriers. Pharm Res 32, 968–985 (2015). https://doi.org/10.1007/s11095-014-1510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1510-4

KEY WORDS

Navigation