Skip to main content

Advertisement

Log in

Quantitative proteomic analysis of dexamethasone-induced effects on osteoblast differentiation, proliferation, and apoptosis in MC3T3-E1 cells using SILAC

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The impairment of osteoblast differentiation is one cause of the glucocorticoid-induced osteoporosis (GCOP). The quantitative proteomic analysis of the dexamethasone (DEX)-induced effects of osteoblast differentiation, proliferation, and apoptosis using stable-isotope labeling by amino acids in cell culture (SILAC) demonstrated drastic changes of some key proteins in MC3T3-E1 cells.

Introduction

The impairment of osteoblast differentiation is one of the main explanations of GCOP. SILAC enables accurate quantitative proteomic analysis of protein changes in cells to explore the underlying mechanism of GCOP.

Methods

Osteoprogenitor MC3T3-E1 cells were treated with or without 10−6 M DEX for 7 days, and the differentiation ability, proliferation, and apoptosis of the cells were measured. The protein level changes were analyzed using SILAC and liquid chromatography-coupled tandem mass spectrometry.

Results

In this study, 10−6 M DEX inhibited both osteoblast differentiation and proliferation but induced apoptosis in osteoprogenitor MC3T3-E1 cells on day 7. We found that 10−6 M DEX increased the levels of tubulins (TUBA1A, TUBB2B, and TUBB5), IQGAP1, S100 proteins (S100A11, S100A6, S100A4, and S100A10), myosin proteins (MYH9 and MYH11), and apoptosis and stress proteins, while inhibited the protein levels of ATP synthases (ATP5O, ATP5H, ATP5A1, and ATP5F1), G3BP-1, and Ras-related proteins (Rab-1A, Rab-2A, and Rab-7) in MC3T3-E1 cells.

Conclusions

Several members of the ATP synthases, myosin proteins, small GTPase superfamily, and S100 proteins may participate in functional inhibition of osteoblast progenitor cells by GCs. Such protein expression changes may be of pathological significance in coping with GCOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACTA:

Actin, alpha skeletal muscle

ACTB:

Actin, cytoplasmic 1

ALP:

Alkaline phosphatase

ANXA1:

Annexin A1

ANXA8:

Annexin A8

ATP5A1:

ATP synthase subunit alpha, mitochondrial precursor

ATP5F1:

ATP synthase B chain, mitochondrial precursor

ATP5H:

ATP synthase D chain, mitochondrial

ATP5O:

ATP synthase O subunit, mitochondrial precursor

BAX:

Apoptosis regulator BAX

DEX:

Dexamethasone

G3BP1:

Ras GTPase-activating protein-binding protein 1

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GCOP:

GC-induced osteoporosis

GC:

Glucocorticoid

HSPA4:

Heat shock 70 kDa protein 4

HSP90AA1:

Heat shock protein HSP 90-alpha

IQGAP1:

Ras GTPase-activating-like protein 1

INTS3:

Integrator complex subunit 3

RAB:

Ras-related protein

SILAC:

Stable-isotope labeling by amino acids in cell culture

TUBA1A:

Tubulin alpha-1 chain

TUBB2B:

Tubulin beta-2B chain

TUBB5:

Tubulin beta-5 chain

LC-MS/MS:

Liquid chromatography-coupled tandem mass spectrometry

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MYH9:

Myosin 9

MYBBP1A:

Myb-binding protein 1A

MYH11:

Isoform 1 of myosin 11

PDCD6IP:

Programmed cell death 6-interacting protein

PDCD6:

Programmed cell death 6

PIGOK:

Protein Interrogation of Gene Ontology and KEGG databases

PTRF:

Polymerase I and transcript release factor

PPIB:

Peptidylprolyl isomerase B

VCP:

Transitional endoplasmic reticulum ATPase

References

  1. Canalis E, Bilezikian JP, Angeli A et al (2004) Perspectives on glucocorticoid-induced osteoporosis. Bone 34:593–598

    Article  PubMed  CAS  Google Scholar 

  2. Rubin MR, Bilezikian JP (2002) Clinical review 151: the role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab 87:4033–4041

    Article  PubMed  CAS  Google Scholar 

  3. Bouvard B, LeGrand C, Audran M et al (2010) Glucocorticoid-induced osteoporosis: a review. Clin Rev Bone Miner Metab 8:15–26

    Article  CAS  Google Scholar 

  4. Smith E, Frenkel B (2005) Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and -independent manner. J Biol Chem 280:2388–2394

    Article  PubMed  CAS  Google Scholar 

  5. Ohnaka K, Tanabe M, Kawate H et al (2005) Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun 329:177–181

    Article  PubMed  CAS  Google Scholar 

  6. Leclerc N, Noh T, Cogan J et al (2008) Opposing effects of glucocorticoids and Wnt signaling on Krox20 and mineral deposition in osteoblast cultures. J Cell Biochem 103:1938–1951

    Article  PubMed  CAS  Google Scholar 

  7. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14:6–16

    PubMed  CAS  Google Scholar 

  8. Canalis E (2008) Notch signaling in osteoblasts. Sci Signal 1:pe17

    Article  PubMed  Google Scholar 

  9. Iu MF, Kaji H, Sowa H et al (2005) Dexamethasone suppresses Smad3 pathway in osteoblastic cells. J Endocrinol 185:131–138

    Article  PubMed  CAS  Google Scholar 

  10. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  11. Jacob RJ, Cramer R (2006) PIGOK: linking protein identity to gene ontology and function. J Proteome Res 5:3429–3432

    Article  PubMed  CAS  Google Scholar 

  12. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122

    Article  PubMed  CAS  Google Scholar 

  13. Engelbrecht Y, de Wet H, Horsch K et al (2003) Glucocorticoids induce rapid up-regulation of mitogen-activated protein kinase phosphatase-1 and dephosphorylation of extracellular signal-regulated kinase and impair proliferation in human and mouse osteoblast cell lines. Endocrinology 144:412–422

    Article  PubMed  CAS  Google Scholar 

  14. Lian JB, Shalhoub V, Aslam F et al (1997) Species-specific glucocorticoid and 1, 25-dihydroxyvitamin D responsiveness in mouse MC3T3–E1 osteoblasts: dexamethasone inhibits osteoblast differentiation and vitamin D down-regulates osteocalcin gene expression. Endocrinology 138:2117–2127

    Article  PubMed  CAS  Google Scholar 

  15. Smith E, Redman RA, Logg CR et al (2000) Glucocorticoids inhibit developmental stage-specific osteoblast cell cycle. Dissociation of cyclin A-cyclin-dependent kinase 2 from E2F4-p130 complexes. J Biol Chem 275:19992–20001

    Article  PubMed  CAS  Google Scholar 

  16. O’Brien CA, Jia D, Plotkin LI et al (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841

    Article  PubMed  Google Scholar 

  17. Jaglin XH, Poirier K, Saillour Y et al (2009) Mutations in the beta-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 41:746–752

    Article  PubMed  CAS  Google Scholar 

  18. Keays DA, Tian G, Poirier K et al (2007) Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128:45–57

    Article  PubMed  CAS  Google Scholar 

  19. Plauchu H, Encha-Razavi F, Hermier M et al (2001) Lissencephaly type III, stippled epiphyses and loose, thick skin: a new recessively inherited syndrome. Am J Med Genet 99:14–20

    Article  PubMed  CAS  Google Scholar 

  20. Shi X, Yang X, Chen D et al (1999) Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J Biol Chem 274:13711–13717

    Article  PubMed  CAS  Google Scholar 

  21. Yang X, Ji X, Shi X et al (2000) Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation. J Biol Chem 275:1065–1072

    Article  PubMed  CAS  Google Scholar 

  22. Oster G, Wang H (2000) Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochim Biophys Acta 1458:482–510

    Article  PubMed  CAS  Google Scholar 

  23. Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246–255

    Article  PubMed  CAS  Google Scholar 

  24. Ye Y, Shibata Y, Yun C et al (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    Article  PubMed  CAS  Google Scholar 

  25. Sakaguchi M, Sonegawa H, Murata H et al (2008) S100A11, an dual mediator for growth regulation of human keratinocytes. Mol Biol Cell 19:78–85

    Article  PubMed  CAS  Google Scholar 

  26. Fullen DR, Reed JA, Finnerty B et al (2001) S100A6 expression in fibrohistiocytic lesions. J Cutan Pathol 28:229–234

    Article  PubMed  CAS  Google Scholar 

  27. Ilg EC, Schafer BW, Heizmann CW (1996) Expression pattern of S100 calcium-binding proteins in human tumors. Int J Cancer 68:325–332

    Article  PubMed  CAS  Google Scholar 

  28. Holt GE, Schwartz HS, Caldwell RL (2006) Proteomic profiling in musculoskeletal oncology by MALDI mass spectrometry. Clin Orthop Relat Res 450:105–110

    Article  PubMed  Google Scholar 

  29. Luo X, Sharff KA, Chen J et al (2008) S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res 466:2060–2070

    Article  PubMed  Google Scholar 

  30. Marenholz I, Lovering RC, Heizmann CW (2006) An update of the S100 nomenclature. Biochim Biophys Acta 1763:1282–1283

    Article  PubMed  CAS  Google Scholar 

  31. Rescher U, Gerke V (2008) S100A10/p11: family, friends and functions. Pflugers Arch 455:575–582

    Article  PubMed  CAS  Google Scholar 

  32. Yao XL, Cowan MJ, Gladwin MT et al (1999) Dexamethasone alters arachidonate release from human epithelial cells by induction of p11 protein synthesis and inhibition of phospholipase A2 activity. J Biol Chem 274:17202–17208

    Article  PubMed  CAS  Google Scholar 

  33. Siddappa R, Licht R, van Blitterswijk C et al (2007) Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res 25:1029–1041

    Article  PubMed  CAS  Google Scholar 

  34. Kemppainen RJ, Behrend EN (1998) Dexamethasone rapidly induces a novel ras superfamily member-related gene in AtT-20 cells. J Biol Chem 273:3129–3131

    Article  PubMed  CAS  Google Scholar 

  35. Chen YX, Li ZB, Diao F et al (2006) Up-regulation of RhoB by glucocorticoids and its effects on the cell proliferation and NF-kappaB transcriptional activity. J Steroid Biochem Mol Biol 101:179–187

    Article  PubMed  CAS  Google Scholar 

  36. Briggs MW, Sacks DB (2003) IQGAP1 as signal integrator: Ca2+, calmodulin, Cdc42 and the cytoskeleton. FEBS Lett 542:7–11

    Article  PubMed  CAS  Google Scholar 

  37. Mateer SC, Wang N, Bloom GS (2003) IQGAPs: integrators of the cytoskeleton, cell adhesion machinery, and signaling networks. Cell Motil Cytoskeleton 55:147–155

    Article  PubMed  CAS  Google Scholar 

  38. Parker F, Maurier F, Delumeau I et al (1996) A Ras-GTPase-activating protein SH3-domain-binding protein. Mol Cell Biol 16:2561–2569

    PubMed  CAS  Google Scholar 

  39. Tocque B, Delumeau I, Parker F et al (1997) Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 9:153–158

    Article  PubMed  CAS  Google Scholar 

  40. Gallouzi IE, Parker F, Chebli K et al (1998) A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol 18:3956–3965

    PubMed  CAS  Google Scholar 

  41. Soncini C, Berdo I, Draetta G (2001) Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease. Oncogene 20:3869–3879

    Article  PubMed  CAS  Google Scholar 

  42. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  43. Nuoffer C, Davidson HW, Matteson J et al (1994) A GDP-bound of rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J Cell Biol 125:225–237

    Article  PubMed  CAS  Google Scholar 

  44. Tisdale EJ, Bourne JR, Khosravi-Far R et al (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119:749–761

    Article  PubMed  CAS  Google Scholar 

  45. Bucci C, Thomsen P, Nicoziani P et al (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    PubMed  CAS  Google Scholar 

  46. Mukhopadhyay A, Funato K, Stahl PD (1997) Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes. J Biol Chem 272:13055–13059

    Article  PubMed  CAS  Google Scholar 

  47. Press B, Feng Y, Hoflack B et al (1998) Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J Cell Biol 140:1075–1089

    Article  PubMed  CAS  Google Scholar 

  48. Vonderheit A, Helenius A (2005) Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 3:e233

    Article  PubMed  Google Scholar 

  49. McMichael BK, Wysolmerski RB, Lee BS (2009) Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion. J Biol Chem 284:12266–12275

    Article  PubMed  CAS  Google Scholar 

  50. Soulez M, Rouviere CG, Chafey P et al (1996) Growth and differentiation of C2 myogenic cells are dependent on serum response factor. Mol Cell Biol 16:6065–6074

    PubMed  CAS  Google Scholar 

  51. Tamama K, Sen CK, Wells A (2008) Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev 17:897–908

    Article  PubMed  CAS  Google Scholar 

  52. Autret A, Martin SJ (2009) Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 36:355–363

    Article  PubMed  CAS  Google Scholar 

  53. Missotten M, Nichols A, Rieger K et al (1999) Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein. Cell Death Differ 6:124–129

    Article  PubMed  CAS  Google Scholar 

  54. Chatellard-Causse C, Blot B, Cristina N et al (2002) Alix (ALG-2-interacting protein X), a protein involved in apoptosis, binds to endophilins and induces cytoplasmic vacuolization. J Biol Chem 277:29108–29115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NIH (Grant DE 018385), the National Natural Science Foundation of China (30950019), and the Medicine and Health Research Fund of Zhejiang Province, China (2009B166). We thank Chantal M. Sottas for the technical support.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H.-T. Deng or R.-S. Ge.

Additional information

Dun Hong and Hai-Xiao Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, D., Chen, HX., Yu, HQ. et al. Quantitative proteomic analysis of dexamethasone-induced effects on osteoblast differentiation, proliferation, and apoptosis in MC3T3-E1 cells using SILAC. Osteoporos Int 22, 2175–2186 (2011). https://doi.org/10.1007/s00198-010-1434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1434-8

Keywords

Navigation