Skip to main content

Advertisement

Log in

Surface Analysis of PEGylated Nano-Shields on Nanoparticles Installed by Hydrophobic Anchors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

This work describes a method for functionalisation of nanoparticle surfaces with hydrophilic “nano-shields” and the application of advanced surface characterisation to determine PEG amount and accumulation at the outmost 10 nm surface that is the predominant factor in determining protein and cellular interactions.

Methods

Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared with a hydrophilic PEGylated “nano-shield” inserted at different levels by hydrophobic anchoring using either a phospholipid-PEG conjugate or the copolymer PLGA-block-PEG by an emulsification/diffusion method. Surface and bulk analysis was performed including X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) and zeta potential. Cellular uptake was investigated in RAW 264.7 macrophages by flow cytometry.

Results

Sub-micron nanoparticles were formed and the combination of (NMR) and XPS revealed increasing PEG levels at the particle surface at higher PLGA-b-PEG copolymer levels. Reduced cellular interaction with RAW 264.7 cells was demonstrated that correlated with greater surface presentation of PEG.

Conclusion

This work demonstrates a versatile procedure for decorating nanoparticle surfaces with hydrophilic “nano-shields”. XPS in combination with NMR enabled precise determination of PEG at the outmost surface to predict and optimize the biological performance of nanoparticle-based drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials. 2009;30(14):2790–8.

    Article  PubMed  CAS  Google Scholar 

  2. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm. 1999;187(2):143–52.

    Article  PubMed  CAS  Google Scholar 

  3. Walker KJ, Turkes AO, Turkes A, Zwink R, Beacock C, Buck AC, et al. Treatment of patients with advanced cancer of the prostate using a slow-release (depot) formulation of the LHRH agonist ICI 118630 (Zoladex®). J Endocrinol. 1984;103(2):R1–4.

    Article  PubMed  CAS  Google Scholar 

  4. Kappy M, Stuart T, Perelman A, Clemons R. Suppression of gonatropin-secretion by a long-acting gonatropin-releasing hormone analog (Leuprolide acetate, Lupron depot) in children with precocious puberty. J Clin Endocrinol Metab. 1989;69(5):1087–9.

    Article  PubMed  CAS  Google Scholar 

  5. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  PubMed  CAS  Google Scholar 

  6. Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, et al. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. Journal of Biomedical Materials Research Part A. 2009;91A(1):263–76.

    Article  CAS  Google Scholar 

  7. Meng FH, Engbers GHM, Feijen J. Polyethylene glycol-grafted polystyrene particles. Journal of Biomedical Materials Research Part A. 2004;70A(1):49–58.

    Article  CAS  Google Scholar 

  8. Hermanson GT. Bioconjugate Techniques. Bioconjugate Techniques (Second Edition). 2 ed. New York: Academic Press; 2008.

  9. Wattendorf U, Merkle HP. PEGylation as a tool for the biomedical engineering of surface modified microparticles. J Pharm Sci. 2008;97(11):4655–69.

    Article  PubMed  CAS  Google Scholar 

  10. Davis SS, Illum L, Neal JC, Garnett MC, Stolnik S. Modification of the copolymers poloxamer 407 and poloxamine 908 can affect the physical and biological properties of surface modified nanospheres. Pharm Res. 1998;15(2):318–24.

    Article  PubMed  Google Scholar 

  11. Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano. 2010;4(11):6629–38.

    Article  PubMed  CAS  Google Scholar 

  12. Neal JC. In vitro displacement by rat serum of adsorbed radiolabeled poloxamer and poloxamine copolymers from model and biodegradable nanospheres. J Pharm Sci. 1998;87(10):1242–8.

    Article  PubMed  CAS  Google Scholar 

  13. Halperin A. Polymer brushes that resist adsorption of model proteins: â design parameters. Langmuir. 1999;15(7):2525–33.

    Article  CAS  Google Scholar 

  14. Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R. PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm. 2008;349(1–2):249–55.

    Article  PubMed  CAS  Google Scholar 

  15. Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W, Langer R, et al. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30(8):1627–34.

    Article  PubMed  CAS  Google Scholar 

  16. Betancourt T, Shah K, Brannon-Peppas L. Rhodamine-loaded poly(lactic-co-glycolic acid) nanoparticles for investigation of in vitro interactions with breast cancer cells. J Mater Sci: Mater Med. 2009;20(1):387–95.

    Article  CAS  Google Scholar 

  17. Fischer S, Foerg C, Ellenberger S, Merkle HP, Gander B. One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands. J Control Release. 2006;111(1–2):135–44.

    Article  PubMed  CAS  Google Scholar 

  18. Liu Y, Li K, Liu B, Feng S-S. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials. 2010;31(35):9145–55.

    Article  PubMed  CAS  Google Scholar 

  19. Farokhzad OC, Cheng JJ, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103(16):6315–20.

    Article  PubMed  CAS  Google Scholar 

  20. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.

    Article  PubMed  CAS  Google Scholar 

  21. Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.

    Article  PubMed  CAS  Google Scholar 

  22. Andersen MO, Lichawska A, Arpanaei A, Jensen SMR, Kaur H, Oupicky D, et al. Surface functionalisation of PLGA nanoparticles for gene silencing. Biomaterials. 2010;31(21):5671–7.

    Article  PubMed  CAS  Google Scholar 

  23. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Wang R, Lu X, Lu W, Zhang C, Liang W. Pegylated phospholipids-based self-assembly with water-soluble drugs. Pharm Res. 2010;27(2):361–70.

    Article  PubMed  CAS  Google Scholar 

  25. Goodwin J. Colloids and Interfaces with Surfactants and Polymers: An Introduction. West Sussex: John Wiley & Sons; 2004.

  26. Shin S-B, Cho H-Y, Kim D-D, Choi H-G, Lee Y-B. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm. 2010;74(2):164–71.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank the Lundbeck Foundation for supporting this work through the grant: Lundbeck Foundation Nanomedicine Center for Individualised Management of Tissue Damage and Regeneration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbesen, M.F., Whitehead, B., Ballarin-Gonzalez, B. et al. Surface Analysis of PEGylated Nano-Shields on Nanoparticles Installed by Hydrophobic Anchors. Pharm Res 30, 1758–1767 (2013). https://doi.org/10.1007/s11095-013-1018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1018-3

KEY WORDS

Navigation