Skip to main content
Log in

Engineered Andrographolide Nanoparticles Mitigate Paracetamol Hepatotoxicity in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Paracetamol (acetaminophen, APAP) overdose is often fatal due to progressive and irreversible hepatic necrosis. The aim of this work was to design Andrographolide (AG) loaded nanoparticles to prevent similar hepatic necrosis.

Methods

Functionalized AG-loaded PLGA nanoparticles carrying different densities of heparin were prepared following a facile emulsion solvent evaporation technique. Nanoparticle morphology, loading and release kinetics were studied. Hepatic localization of the nanoparticles was investigated in both normal and APAP damaged conditions using FITC fluorescent probe. Different serum parameters and liver histopathology were further examined as indicators of hepatic condition before and after treatment.

Result

A collection of heparin functionalized AG-loaded PLGA nanoparticles were designed. Low amount of heparin on the particle surface could rapidly localize the nanoparticles up to the liver. The new functionalized AG nanoparticles affect efficient hepatoprotection in experimental mouse APAP overdose conditions. AG nanoparticle hepatoprotection was due to the rapid regeneration of antioxidant capacity and hepatic GSH store.

Conclusions

Engineered nanoparticles loaded with AG provided a fast protection in APAP induced acute liver failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AG:

andrographolide

AGnp:

andrographolide nanoparticle

APAP:

N-acetyl-p-aminophenol

BCS:

biopharmaceutical classification system

CT:

computed tomography

CTCF:

corrected total cell fluorescence

DILD:

drug induced liver damage

FITC:

fluorescein isothiocyanate

Fnp:

fluorescent nanoparticle

Hep:

heparin

Hep-Fnp:

heparinized fluorescent nanoparticle

Hep-AGnp:

heparin functionalized andrographolide nanoparticle

KCE:

known chemical entity

MDA:

malondialdehyde

Mrp:

multi-drug resistance protein

NAC:

N-acetyl cysteine

NAPQI:

N-acetyl-para benzoquinoneimine

PEO:

polyethylene oxide

PLGA:

poly (D-L-lactide-co-glycolic acid)

PPO:

polypropylene oxide

ROS:

reactive oxygen species

REFERENCES

  1. Lee WM. Acetaminophen-related acute liver failure in the United States. Hepatol Res. 2008;38(Suppl1):S3–8.

    Article  PubMed  CAS  Google Scholar 

  2. Knight TR, Fariss MW, Farhood A, Jaeschke H. Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice. Toxicol Sci. 2003;76(1):229–36.

    Article  PubMed  CAS  Google Scholar 

  3. Chen C, Hennig GE, Manautou JE. Hepatobiliary excretion of acetaminophen glutathione conjugate and its derivatives in transport-deficient (TR-) hyperbilirubinemic rats. Drug Metab Dispos. 2003;31(6):798–804.

    Article  PubMed  CAS  Google Scholar 

  4. Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci. 2001;62(2):212–20.

    Article  PubMed  CAS  Google Scholar 

  5. Jaeschke H, McGill MR, Williams CD, Ramachandran A. Current issues with acetaminophen hepatotoxicity—a clinically relevant model to test the efficacy of natural products. Life Sci. 2011;88(17–18):737–45.

    Article  PubMed  CAS  Google Scholar 

  6. North TE, Babu IR, Vedder LM, Lord AM, Wishnok JS, Tannenbaum SR, et al. PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci U S A. 2010;107(40):17315–20.

    Article  PubMed  CAS  Google Scholar 

  7. Hidalgo MA, Romero A, Figueroa J, Cortes P, Concha II, Hancke JL, et al. Andrographolide interferes with binding of nuclear factor-kappaB to DNA in HL-60-derived neutrophilic cells. Br J Pharmacol. 2005;144(5):680–6.

    Article  PubMed  CAS  Google Scholar 

  8. Trivedi NP, Rawal UM, Patel BP. Hepatoprotective effect of andrographolide against hexachlorocyclohexane-induced oxidative injury. Integr Cancer Ther. 2007;6(3):271–80.

    Article  PubMed  CAS  Google Scholar 

  9. Sheeja K, Guruvayoorappan C, Kuttan G. Antiangiogenic activity of Andrographis paniculata extract and andrographolide. Int Immunopharmacol. 2007;7(2):211–21.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu SP, Kang BA. Distribution and excretion of [35S] NaHSO3-andrographolide by autoradiography. Acta Pharmacol Sin. 1981;2(4):266–9.

    CAS  Google Scholar 

  11. Yuasa H, Watanabe J. Are novel scavenger-like receptors involved in the hepatic uptake of heparin? Drug Metab Pharmacokinet. 2003;18(5):273–86.

    Article  PubMed  CAS  Google Scholar 

  12. Sun IC, Eun DK, Na JH, Lee S, Kim IJ, Youn IC, et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry. 2009;15(48):13341–7.

    PubMed  CAS  Google Scholar 

  13. Park K, Kim K, Kwon IC, Kim SK, Lee S, Lee DY, et al. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir. 2004;20(26):11726–31.

    Article  PubMed  CAS  Google Scholar 

  14. Roy P, Das S, Bera T, Mondol S, Mukherjee A. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomed. 2010;5:1113–21.

    CAS  Google Scholar 

  15. Wirsen A, Ohrlander M, Albertsson AC. Bioactive heparin surfaces from derivatization of polyacrylamide-grafted LLDPE. Biomaterials. 1996;17(19):1881–9.

    Article  PubMed  CAS  Google Scholar 

  16. Mladenovic D, Radosavljevic T, Ninkovic M, Vucevic D, Jesic-Vukicevic R, Todorovic V. Liver antioxidant capacity in the early phase of acute paracetamol-induced liver injury in mice. Food Chem Toxicol. 2009;47(4):866–70.

    Article  PubMed  CAS  Google Scholar 

  17. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    Article  PubMed  CAS  Google Scholar 

  18. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  PubMed  CAS  Google Scholar 

  19. Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972;247(21):6960–2.

    PubMed  CAS  Google Scholar 

  20. Best TM, Fiebig R, Corr DT, Brickson S, Ji L. Free radical activity, antioxidant enzyme, and glutathione changes with muscle stretch injury in rabbits. J Appl Physiol. 1999;87(1):74–82.

    PubMed  CAS  Google Scholar 

  21. Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 2010;18(4):533–43.

    Article  PubMed  CAS  Google Scholar 

  22. Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):1–7.

    Article  Google Scholar 

  23. Meng ZX, Zheng W, Li L, Zheng YF. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys. 2011;125(3):606–11.

    Article  CAS  Google Scholar 

  24. Innocenzi P, Malfatti L, Piccinini M, Marcelli A. Evaporation-induced crystallization of pluronic F127 studied in situ by time-resolved infrared spectroscopy. J Phys Chem A. 2010;114(1):304–8.

    Article  PubMed  CAS  Google Scholar 

  25. Yuk SH, Oh KS, Cho SH, Kim SY, Oh S, Lee JH, et al. Enhancement of the targeting capabilities of the Paclitaxel-loaded pluronic nanoparticles with a glycol chitosan/heparin composite. Mol Pharm. 2012;9(2):230–6.

    Article  PubMed  CAS  Google Scholar 

  26. Grattard N, Pernin M, Marty B, Roudaut G, Champion D, Le Meste M. Study of release kinetics of small and high molecular weight substances dispersed into spray-dried ethylcellulose microspheres. J Control Release. 2002;84(3):125–35.

    Article  PubMed  CAS  Google Scholar 

  27. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–43.

    Article  PubMed  CAS  Google Scholar 

  28. Lin HR, Sung KC, Vong WJ. In situ gelling of alginate/pluronic solutions for opthalmic delivery of pilocarpine. Biomacromolecules. 2004;5(6):2358–65.

    Article  PubMed  CAS  Google Scholar 

  29. Marschall HU, Wagner M, Zollner G, Trauner M. Clinical hepatotoxicity regulation and treatment with inducers of transport and cofactors. Mol Pharm. 2007;4(6):895–910.

    Article  PubMed  CAS  Google Scholar 

  30. Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. In: Uetrecht J, editor. Adverse drug reactions, handbook of experimental pharmacology. Berlin Heidelberg: Springer-Verlag; 2010. p. 369–405.

    Chapter  Google Scholar 

  31. Ferret PJ, Hammoud R, Tulliez M, Tran A, Trebeden H, Jaffray P, et al. Detoxification of reactive oxygen species by a nonpeptidyl mimic of superoxide dismutase cures acetaminophen-induced acute liver failure in the mouse. Hepatology. 2001;33(5):1173–80.

    Article  PubMed  CAS  Google Scholar 

  32. Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 2006;89(1):31–41.

    Article  PubMed  CAS  Google Scholar 

  33. Visen PKS, Shukla B, Patnaik GK, Dhawan BN. Andrographolide protects rat hepatocytes against paracetamol-induced damage. J Ethnopharmacol. 1993;40(2):131–6.

    Article  PubMed  CAS  Google Scholar 

  34. Shi G, Zhang Z, Zhang R, Zhang X, Lu Y, Yang J, et al. Protective effect of andrographolide against concanavalin A-induced liver injury. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  35. Chang KT, Lii CK, Tsai CW, Yang AJ, Chen HW. Modulation of the expression of the pi class of glutathione S-transferase by Andrographis paniculata extracts and andrographolide. Food Chem Toxicol. 2008;46(3):1079–88.

    Article  PubMed  CAS  Google Scholar 

  36. Jarukamjorn K, Don-in K, Makejaruskul C, Laha T, Daodee S, Pearaksa P, et al. Impact of Andrographis paniculata crude extract on mouse hepatic cytochrome P450 enzymes. J Ethnopharmacol. 2006;105(3):464–7.

    Article  PubMed  Google Scholar 

  37. Dunn SE, Coombes AGA, Garnett MC, Davis SS, Davies MC, Illum L. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. J Control Release. 1997;44(1):65–76.

    Article  CAS  Google Scholar 

  38. Santander-Ortega MJ, Jodar-Reyes AB, Csaba N, Bastos-Gonzalez D, Ortega-Vinuesa JL. Colloidal stability of pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J Colloid Interface Sci. 2006;302(2):522–9.

    Article  PubMed  CAS  Google Scholar 

  39. Oh KS, Song JY, Yoon SJ, Park Y, Kim D, Yuk SH. Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J Control Release. 2010;146(2):207–11.

    Article  PubMed  CAS  Google Scholar 

  40. Besheer A, Vogel J, Glanz D, Kressler J, Groth T, Mäder K. Characterization of PLGA nanospheres stabilized with amphiphilic polymers: hydrophobically modified hydroxyethyl starch vs pluronics. Mol Pharm. 2009;6(2):407–15.

    Article  PubMed  CAS  Google Scholar 

  41. Fakurazi S, Hairuszah I, Nanthini U. Moringa oleifera Lam prevents acetaminophen induced liver injury through restoration of glutathione level. Food Chem Toxicol. 2008;46(8):2611–5.

    Article  PubMed  CAS  Google Scholar 

  42. Trivedi NP, Rawal UM. Hepatoprotective and antioxidant property of Andrographis paniculata (Nees) in BHC induced liver damage in mice. Indian J Exp Biol. 2001;39(1):41–6.

    PubMed  CAS  Google Scholar 

  43. Hinson JA, Reid AB, McCullough SS, James LP. Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab Rev. 2004;36(3–4):805–22.

    Article  PubMed  CAS  Google Scholar 

  44. Mehrab-Mohseni M, Sendi H, Steuerwald N, Ghosh S, Schrum LW, Bonkovsky HL. Legalon-SIL downregulates HCV core and NS5A in human hepatocytes expressing full-length HCV. World J Gastroenterol. 2011;17(13):1694–700.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Senior Research Fellowships to Partha Roy and Suvadra Das from Indian Council for Medical Research and Council of Scientific and Industrial Research respectively, is gratefully acknowledged. This work is partly funded from the Department of Biotechnology Govt of India nanoscience and nanotechnology grants. Dr. Runa Ghosh Auddy would like to thank CRNN, University of Calcutta for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, P., Das, S., Auddy, R.G. et al. Engineered Andrographolide Nanoparticles Mitigate Paracetamol Hepatotoxicity in Mice. Pharm Res 30, 1252–1262 (2013). https://doi.org/10.1007/s11095-012-0964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0964-5

KEY WORDS

Navigation