Skip to main content
Log in

Sinapic acid ameliorates paracetamol-induced acute liver injury through targeting oxidative stress and inflammation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Acetaminophen (paracetamol, APAP) overdose is the principal cause of acute liver injury (ALI) that leads to liver failure typified with oxidative stress, mitochondrial and lysosomal dysfunction and with few antidotes for this condition. Therefore, more effective therapeutics are urgently required. Sinapic acid is a phenolic phytochemical with significant antioxidant, anti-inflammatory and hepatoprotective potential.

Rationale and purpose of the study

This study was conducted to evaluate hepatoprotective effect of this phytochemical in acetaminophen-induced model of ALI.

Methods and results

Male C57BL/6 mice were treated p.o. with sinapic acid (10 or 50 mg/kg) 3 times at 72, 24, and 1 h before APAP (300 mg/kg; i.p.) challenge. Functional factors of liver dysfunction were determined along with hepatic assessment of oxidative stress and inflammatory indexes and histopathological analysis was also conducted. Sinapic acid (50 mg/kg) properly decreased serum levels of ALT, ALP, and AST besides reducing liver level of ROS, MDA, IL-6, TNF-α, NF-kB, and MPO and improved sirtuin 1, HO-1, Nrf2, SOD activity, and MMP with no significant effect on IL-1β and catalase activity in addition to decreasing activity of lysosomal enzymes including cathepsin B and β-galactosidase. Also, sinapic acid at the higher dose ameliorated liver histopathological changes due to APAP and properly reversed NF-kB and Nrf2 immunoreactivity.

Conclusions

These findings show that sinapic acid pretreatment effectively protects liver against adverse and hepatotoxic effect of APAP through its antioxidant- and anti-inflammatory potential linked to NF-kB/Nrf2/HO-1 signaling and also via regulation of sirtuin 1, mitochondrial integrity, and lysosomal stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALI:

Acute liver injury

ALT:

Alanine aminotransferase

ALP:

Alkaline phosphatase

APAP:

N-acetyl-para-aminophenol (Acetaminophen)

AST:

Aspartate aminotransferase

DCF-DA:

Dichlorofluorescein-diacetate

GSH:

Glutathione

HO-1:

Heme oxygenase 1

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

MDA:

Malondialdehyde

MMP:

Mitochondrial membrane potential

MPO:

Myeloperoxidase

NAPQI:

N-acetyl-para-benzo-quinone imine

Nrf2:

Nuclear factor erythroid 2–related factor 2

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNFα:

Tumor necrosis factor α

References

  1. Chen T, Li R, Chen P (2021) Gut microbiota and chemical-induced acute liver injury. Front Physiol 12:688780. https://doi.org/10.3389/fphys.2021.688780

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stravitz RT, Lee WM (2019) Acute liver failure. The Lancet 394:869–881. https://doi.org/10.1016/S0140-6736(19)31894-X

    Article  CAS  Google Scholar 

  3. Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N (2016) Acetaminophen-Induced Hepatotoxicity: a Comprehensive Update. J Clin Transl Hepatol 4:131–142

    PubMed  PubMed Central  Google Scholar 

  4. Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44:88–106. https://doi.org/10.3109/03602532.2011.602688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang R, Song C, Chen J, Zhou L, Jiang X, Cao X et al (2020) Limonin ameliorates acetaminophen-induced hepatotoxicity by activating Nrf2 antioxidative pathway and inhibiting NF-κB inflammatory response via upregulating Sirt1. Phytomedicine 69:153211. https://doi.org/10.1016/j.phymed.2020.153211

    Article  CAS  PubMed  Google Scholar 

  6. Olivo R, Guarrera JV, Pyrsopoulos NT (2018) Liver Transplantation for Acute Liver Failure. Clin Liver Dis 22:409–417. https://doi.org/10.1016/j.cld.2018.01.014

    Article  PubMed  Google Scholar 

  7. Jin Y, Wang H, Yi K, Lv S, Hu H, Li M et al (2020) Applications of nanobiomaterials in the therapy and imaging of acute liver failure. Nano-micro letters 13:25. https://doi.org/10.1007/s40820-020-00550-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma L, Zheng J, Chen H, Zeng X, Wang S, Yang C et al (2021) A systematic screening of traditional Chinese medicine identifies two novel inhibitors against the cytotoxic aggregation of amyloid beta. Front Pharmacol. https://doi.org/10.3389/fphar.2021.637766

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nićiforović N, Abramovič H (2014) Sinapic acid and its derivatives: natural sources and bioactivity. Comprehen Rev Food Sci Food Safety 13:34–51. https://doi.org/10.1111/1541-4337.12041

    Article  CAS  Google Scholar 

  10. Zare K, Eidi A, Roghani M, Rohani AH (2015) The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat. Metab Brain Dis 30:205–213. https://doi.org/10.1007/s11011-014-9604-6

    Article  CAS  PubMed  Google Scholar 

  11. Yang C, Deng Q, Xu J, Wang X, Hu C, Tang H et al (2019) Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Res Int (Ottawa, Ont) 116:1202–1211. https://doi.org/10.1016/j.foodres.2018.10.003

    Article  CAS  Google Scholar 

  12. Shin DS, Kim KW, Chung HY, Yoon S, Moon JO (2013) Effect of sinapic acid against carbon tetrachloride-induced acute hepatic injury in rats. Arch Pharmacal Res 36:626–633. https://doi.org/10.1007/s12272-013-0050-5

    Article  CAS  Google Scholar 

  13. Shin DS, Kim KW, Chung HY, Yoon S, Moon JO (2013) Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch Pharmacal Res 36:608–618. https://doi.org/10.1007/s12272-013-0033-6

    Article  CAS  Google Scholar 

  14. Ahmad A, Alkharfy KM, Bin Jardan YA, Shahid M, Ansari MA, Alqahtani S et al (2021) Sinapic acid mitigates methotrexate-induced hepatic injuries in rats through modulation of Nrf-2/HO-1 signaling. Environ Toxicol 36:1261–1268. https://doi.org/10.1002/tox.23123

    Article  CAS  PubMed  Google Scholar 

  15. Ansari MA, Raish M, Bin Jardan YA, Ahmad A, Shahid M, Ahmad SF et al (2021) Sinapic acid ameliorates D-galactosamine/lipopolysaccharide-induced fulminant hepatitis in rats: Role of nuclear factor erythroid-related factor 2/heme oxygenase-1 pathways. World J Gastroenterol 27:592–608. https://doi.org/10.3748/wjg.v27.i7.592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roy SJ, Stanely Mainzen Prince P (2012) Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Food Chem Toxicol 50:3984–3989. https://doi.org/10.1016/j.fct.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  17. Stanely Mainzen Prince P, Dey P, Roy SJ (2020) Sinapic acid safeguards cardiac mitochondria from damage in isoproterenol-induced myocardial infarcted rats. J Biochem Mol Toxicol 34:e22556. https://doi.org/10.1002/jbt.22556

    Article  CAS  PubMed  Google Scholar 

  18. Wimborne HJ, Hu J, Takemoto K, Nguyen NT, Jaeschke H, Lemasters JJ et al (2020) Aldehyde dehydrogenase-2 activation decreases acetaminophen hepatotoxicity by prevention of mitochondrial depolarization. Toxicol Appl Pharmacol 396:114982. https://doi.org/10.1016/j.taap.2020.114982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Silambarasan T, Manivannan J, Raja B, Chatterjee S (2016) Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid–Role of HMG-CoA reductase. Eur J Pharmacol 777:113–123. https://doi.org/10.1016/j.ejphar.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  20. Mondal M, Hossain MM, Hasan MR, Tarun MTI, Islam MAF, Choudhuri MSK et al (2020) Hepatoprotective and antioxidant capacity of mallotus repandus ethyl acetate stem extract against d-galactosamine-induced hepatotoxicity in rats. ACS Omega 5:6523–6531. https://doi.org/10.1021/acsomega.9b04189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohamadi-Zarch SM, Baluchnejadmojarad T, Nourabadi D, Khanizadeh AM, Roghani M (2020) Protective effect of diosgenin on LPS/D-Gal-induced acute liver failure in C57BL/6 mice. Microb Pathog 146:104243. https://doi.org/10.1016/j.micpath.2020.104243

    Article  CAS  PubMed  Google Scholar 

  22. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  CAS  PubMed  Google Scholar 

  23. Nandi A, Chatterjee IB (1988) Assay of superoxide dismutase activity in animal tissues. J Biosci 13:305–315. https://doi.org/10.1007/BF02712155

    Article  CAS  Google Scholar 

  24. Aebi H. [13] Catalase in vitro. Methods Enzymol. 105: Academic Press; 1984. p. 121–6.

  25. Khosravi Z, Sedaghat R, Baluchnejadmojarad T, Roghani M (2019) Diosgenin ameliorates testicular damage in streptozotocin-diabetic rats through attenuation of apoptosis, oxidative stress, and inflammation. Int Immunopharmacol 70:37–46

    Article  CAS  Google Scholar 

  26. Baluchnejadmojarad T, Mohamadi-Zarch SM, Roghani M (2019) Safranal, an active ingredient of saffron, attenuates cognitive deficits in amyloid β-induced rat model of Alzheimer’s disease: underlying mechanisms. Metab Brain Dis 34:1747–1759. https://doi.org/10.1007/s11011-019-00481-6

    Article  CAS  PubMed  Google Scholar 

  27. Korolenko TA, Johnston TP, Tuzikov FV, Tuzikova NA, Pupyshev AB, Spiridonov VK et al (2016) Early-stage atherosclerosis in poloxamer 407-induced hyperlipidemic mice: pathological features and changes in the lipid composition of serum lipoprotein fractions and subfractions. Lipids Health Dis 15:16. https://doi.org/10.1186/s12944-016-0186-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barrett AJ, Kirschke H (1981) Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. https://doi.org/10.1016/s0076-6879(81)80043-2

    Article  PubMed  Google Scholar 

  29. Lyu Z, Ji X, Chen G, An B (2019) Atractylodin ameliorates lipopolysaccharide and d-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int Immunopharmacol 72:348–357. https://doi.org/10.1016/j.intimp.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  30. Ali SA, Sharief NH, Mohamed YS (2019) Hepatoprotective activity of some medicinal plants in Sudan. Evid Based Complement Alternat Med 2019:2196315. https://doi.org/10.1155/2019/2196315

    Article  PubMed  PubMed Central  Google Scholar 

  31. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ 172:367–379. https://doi.org/10.1503/cmaj.1040752

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiong W, Yuan Z, Wang T, Wu S, Xiong Y, Yao Y et al (2021) Quercitrin attenuates acetaminophen-induced acute liver injury by maintaining mitochondrial complex I Activity. Front Pharmacol 12:586010. https://doi.org/10.3389/fphar.2021.586010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Araujo J, Zhang M, Yin F (2012) Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol. https://doi.org/10.3389/fphar.2012.00119

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baluchnejadmojarad T, Zeinali H, Roghani M (2018) Scutellarin alleviates lipopolysaccharide-induced cognitive deficits in the rat: Insights into underlying mechanisms. Int Immunopharmacol 54:311–319. https://doi.org/10.1016/j.intimp.2017.11.033

    Article  CAS  PubMed  Google Scholar 

  35. Liu FC, Yu HP, Chou AH, Lee HC, Liao CC (2020) Corilagin reduces acetaminophen-induced hepatotoxicity through MAPK and NF-κB signaling pathway in a mouse model. Am J Transl Res 12:5597–5607

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mulita F, Karpetas G, Liolis E, Vailas M, Tchabashvili L, Maroulis I (2021) Comparison of analgesic efficacy of acetaminophen monotherapy versus acetaminophen combinations with either pethidine or parecoxib in patients undergoing laparoscopic cholecystectomy: a randomized prospective study. Med Glas 18:27–32

    Google Scholar 

  37. Akakpo JY, Ramachandran A, Orhan H, Curry SC, Rumack BH, Jaeschke H (2020) 4-methylpyrazole protects against acetaminophen-induced acute kidney injury. Toxicol Appl Pharmacol 409:115317. https://doi.org/10.1016/j.taap.2020.115317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH et al (2021) Effects of nerol on paracetamol-induced liver damage in Wistar albino rats. Biomed Pharmacotherapy. https://doi.org/10.1016/j.biopha.2021.111732

    Article  Google Scholar 

  39. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N (2008) Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283:13565–13577. https://doi.org/10.1074/jbc.M708916200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakagawa H, Maeda S, Hikiba Y, Ohmae T, Shibata W, Yanai A et al (2008) Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 135:1311–1321. https://doi.org/10.1053/j.gastro.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  41. Huang R, Pan H, Zhou M, Jin J, Ju Z, Ren G et al (2021) Potential liver damage due to co-exposure to As, Cd, and Pb in mining areas: Association analysis and research trends from a Chinese perspective. Environ Res 201:111598. https://doi.org/10.1016/j.envres.2021.111598

    Article  CAS  PubMed  Google Scholar 

  42. Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A (2013) Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 55:279–289. https://doi.org/10.1016/j.fct.2012.12.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shan Z, Ju C (2020) Hepatic macrophages in liver injury. Front Immunol. https://doi.org/10.3389/fimmu.2020.00322

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pan CW, Pan ZZ, Hu JJ, Chen WL, Zhou GY, Lin W et al (2016) Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Eur J Pharmacol 770:85–91. https://doi.org/10.1016/j.ejphar.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  45. Deng JS, Jiang WP, Chen CC, Lee LY, Li PY, Huang WC et al (2020) Cordyceps cicadae mycelia ameliorate cisplatin-induced acute kidney injury by suppressing the TLR4/NF-kappaB/MAPK and activating the HO-1/Nrf2 and Sirt-1/AMPK pathways in mice. Oxid Med Cell Longev 2020:7912763. https://doi.org/10.1155/2020/7912763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ et al (2021) Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-14530-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jaeschke H, Hasegawa T (2006) Role of neutrophils in acute inflammatory liver injury. Liver Int 26:912–919

    Article  CAS  Google Scholar 

  48. He M, Horuk R, Moochhala SM, Bhatia M (2007) Treatment with BX471, a CC chemokine receptor 1 antagonist, attenuates systemic inflammatory response during sepsis. Am J Physiol Gastrointest Liver Physiol 292:G1173–G1180. https://doi.org/10.1152/ajpgi.00420.2006

    Article  PubMed  Google Scholar 

  49. Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules. https://doi.org/10.3390/biom10020320

    Article  PubMed  PubMed Central  Google Scholar 

  50. Habtemariam S (2019) The Nrf2/HO-1 axis as targets for flavanones: neuroprotection by pinocembrin, naringenin, and eriodictyol. Oxid Med Cell Longev 2019:4724920. https://doi.org/10.1155/2019/4724920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei X, Wang H, Sun X, Huang X, Xu W, Liang Y et al (2020) 4-hydroxy-2(3H)-benzoxazolone alleviates acetaminophen-induced hepatic injury by inhibiting NF-κB and activating Nrf2/HO-1 signaling pathways. Am J Transl Res 12:2169–2180

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Du K, Ramachandran A, Jaeschke H (2016) Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol 10:148–156. https://doi.org/10.1016/j.redox.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR et al (2016) Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev 96:307–364. https://doi.org/10.1152/physrev.00010.2014

    Article  CAS  PubMed  Google Scholar 

  54. Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 57:453–455

    PubMed  Google Scholar 

  55. Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517. https://doi.org/10.1016/j.bbabio.2006.04.029

    Article  CAS  PubMed  Google Scholar 

  56. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. https://doi.org/10.1042/bj20081386

    Article  CAS  PubMed  Google Scholar 

  57. Guo H, Sun J, Li D, Hu Y, Yu X, Hua H et al (2019) Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother 112:108704. https://doi.org/10.1016/j.biopha.2019.108704

    Article  CAS  PubMed  Google Scholar 

  58. Jiang W, Zhang X, Hao J, Shen J, Fang J, Dong W et al (2014) SIRT1 protects against apoptosis by promoting autophagy in degenerative human disc nucleus pulposus cells. Sci Rep 4:7456. https://doi.org/10.1038/srep07456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8:38–48. https://doi.org/10.1016/j.cmet.2008.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C et al (2012) SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS ONE 7:e46364. https://doi.org/10.1371/journal.pone.0046364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moles A, Torres S, Baulies A, Garcia-Ruiz C, Fernandez-Checa JC (2018) Mitochondrial-lysosomal axis in acetaminophen hepatotoxicity. Front Pharmacol 9:453. https://doi.org/10.3389/fphar.2018.00453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silambarasan T, Manivannan J, Priya MK, Suganya N, Chatterjee S, Raja B (2015) Sinapic acid protects heart against ischemia/reperfusion injury and H9c2 cardiomyoblast cells against oxidative stress. Biochem Biophys Res Commun 456:853–859. https://doi.org/10.1016/j.bbrc.2014.12.022

    Article  CAS  PubMed  Google Scholar 

  63. Hu J, Kholmukhamedov A, Lindsey CC, Beeson CC, Jaeschke H, Lemasters JJ (2016) Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline. Free Radical Biol Med 97:418–426. https://doi.org/10.1016/j.freeradbiomed.2016.06.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was financially supported in 2019 by National Institute for Medical Research Development (NIMAD) of Iran (Grant number 987706).

Funding

This article was funded by National Institute for Medical Research Development (987706).

Author information

Authors and Affiliations

Authors

Contributions

AR performed the experiments of the study. MR analyzed the data, supervised the study, and write the manuscript. TB helped in performing experiments and assisted in statistical analysis and manuscript preparation. All authors read and reviewed the final manuscript.

Corresponding author

Correspondence to Mehrdad Roghani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures of this study involving animals were approved by NIMAD Institute (Tehran, Iran) (IR.NIMAD.REC.1399.007) which were in compliance with NIH recommended guidelines.

Consent to participate

No such consent was required for this experimental study.

Consent to publish

All mentioned authors agreed on publication of this manuscript and gave explicit consent to submit. In addition, explicit consent from the responsible authorities at the institute/organization where the work has been carried out has been obtained before submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, A., Baluchnejadmojarad, T. & Roghani, M. Sinapic acid ameliorates paracetamol-induced acute liver injury through targeting oxidative stress and inflammation. Mol Biol Rep 49, 4179–4191 (2022). https://doi.org/10.1007/s11033-022-07251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07251-1

Keywords

Navigation