Skip to main content
Log in

Polytetrafluoroethylene Sputtered PES Membranes for Membrane Distillation: Influence of RF Magnetron Sputtering Conditions

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thin films of fluorocarbon were deposited on polyethersulfone membranes via argon plasma sputtering of a poly(tetrafluoroethylene) (PTFE) target in an RF magnetron plasma reactor. The obtained deposited ultrathin coatings had nanoscale roughnesses and high degrees of fluorination. The intensity of fluorine atom in plasma environment during fluorocarbon deposition was investigated. Depending on the deposition conditions comprising working gas pressure, applied RF power, and distance between the target and the substrate, polymeric films with different chemical compositions and/or morphologies were obtained. The morphologies of the films were analyzed by means of SEM, XPS, and AFM. The results suggested that the sputtered film deposited at a higher pressure and longer target–substrate distance and moderate RF power had a surface composition and chemical structure closer to those of the PTFE film. The treated hydrophobic PES membranes with water contact angles as high as 115° were applied for the first time in an air gap membrane distillation setup for removal of benzene as a volatile organic compound from water. The results showed that the plasma-treated membranes have a comparable or superior performance to that of commercial PTFE used in membrane distillation with similar permeate flux and separation factor after 20 h long term performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. El-Bourawi MS, Ding Z, Ma R, Khayet M (2006) A framework for better understanding membrane distillation separation process. J Memb Sci 285:4–29. doi:10.1016/j.memsci.2006.08.002

    Article  CAS  Google Scholar 

  2. Zhang Y, Peng Y, Ji S, Wang S (2016) Numerical simulation of 3D hollow-fiber vacuum membrane distillation by computational fluid dynamics. Chem Eng Sci 152:172–185. doi:10.1016/j.ces.2016.05.040

    Article  CAS  Google Scholar 

  3. Khayet M (2011) Membranes and theoretical modeling of membrane distillation: a review. Adv Colloid Interface Sci 164:56–88. doi:10.1016/j.cis.2010.09.005

    Article  CAS  Google Scholar 

  4. Dao TD, Mericq JP, Laborie S, Cabassud C (2013) A new method for permeability measurement of hydrophobic membranes in vacuum membrane distillation process. Water Res 47:2096–2104. doi:10.1016/j.watres.2013.01.040

    Article  CAS  Google Scholar 

  5. Khayet M, Matsuura T (2011) Membrane distillation principles and applications. Elsevier B.V, Oxford

    Google Scholar 

  6. AlMarzooqi FA, Bilad MR, Arafat HA (2016) Development of PVDF membranes for membrane distillation via vapour induced crystallization. Eur Polym J 77:164–173. doi:10.1016/j.eurpolymj.2016.01.031

    Article  CAS  Google Scholar 

  7. Khayet M, Matsuura T (2001) Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation. Ind Eng Chem 40:5710–5718. doi:10.1021/ie010553y

    Article  CAS  Google Scholar 

  8. Song L, Li B, Sirkar KK, Gilron JL (2007) Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies, and a model. Ind Eng Chem Res 46:2307–2323. doi:10.1021/ie0609968

    Article  CAS  Google Scholar 

  9. Li B, Sirkar KK (2005) Novel membrane and device for vacuum membrane distillation-based desalination process. J Memb Sci 257:60–75. doi:10.1016/j.memsci.2004.08.040

    Article  CAS  Google Scholar 

  10. Wang H, Yang L, Zhao X et al (2009) Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by blending sulfonated polyethersulfone. Chin J Chem Eng 17:324–329. doi:10.1016/S1004-9541(08)60211-6

    Article  Google Scholar 

  11. Bégoin L, Rabiller-Baudry M, Chaufer B et al (2006) Methodology of analysis of a spiral-wound module. Application to PES membrane for ultrafiltration of skimmed milk. Desalination 192:40–53. doi:10.1016/j.desal.2005.10.010

    Article  Google Scholar 

  12. Liang CY, Uchytil P, Petrychkovych R et al (2012) A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Sep Purif Technol 92:57–63. doi:10.1016/j.seppur.2012.03.016

    Article  CAS  Google Scholar 

  13. Li JF, Xu ZL, Yang H et al (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732. doi:10.1016/j.apsusc.2008.07.139

    Article  CAS  Google Scholar 

  14. Fang HHP, Shi X (2005) Pore fouling of microfiltration membranes by activated sludge. J Memb Sci 264:161–166. doi:10.1016/j.memsci.2005.04.029

    Article  CAS  Google Scholar 

  15. Sun X (2010) Effect of the based membrane on the hydrophobicity of super-hydrophibic PES membrane and its structural properties. Mod Appl Sci 4:71–77

    CAS  Google Scholar 

  16. Khayet M, Matsuura T (2003) Application of surface modifying macromolecules for the preparation of membranes for membrane distillation. Desalination 158:51–56. doi:10.1016/S0011-9164(03)00432-6

    Article  CAS  Google Scholar 

  17. Kylián O, Petr M, Serov A et al (2014) Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer. Vacuum 100:57–60. doi:10.1016/j.vacuum.2013.07.014

    Article  Google Scholar 

  18. Laird ED, Bose RK, Wang W et al (2013) Carbon nanotube-directed polytetrafluoroethylene crystal growth via initiated chemical vapor deposition. Macromol Rapid Commun 34:251–256. doi:10.1002/marc.201200678

    Article  CAS  Google Scholar 

  19. Iwamori S, Hasegawa N, Uemura A (2008) Fluorocarbon polymer thin films prepared by three different types of r.f. magnetron sputtering systems. Surf Coatings Technol 203:59–64. doi:10.1016/j.surfcoat.2008.07.035

    Article  CAS  Google Scholar 

  20. Qi H, Zhang Y, Di J, Du W (2007) Morphology and structure of polymer fluorocarbon coatings on polyimide by sputtering. Mater Sci 201:5522–5525. doi:10.1016/j.surfcoat.2006.07.222

    CAS  Google Scholar 

  21. Kwong HY, Wong MH, Wong YW, Wong KH (2007) Superhydrophobicity of polytetrafluoroethylene thin film fabricated by pulsed laser deposition. Appl Surf Sci 253:8841–8845. doi:10.1016/j.apsusc.2007.04.036

    Article  CAS  Google Scholar 

  22. Zhang Y, Yang GH, Kang ET et al (2002) Deposition of fluoropolymer films on Si (100) surfaces by rf magnetron sputtering of poly(tetrafluoroethylene). Langmuir 18:6373–6380. doi:10.1021/la011606j

    Article  CAS  Google Scholar 

  23. Morrison DT, Robertson T (1973) R.F sputterng of plastics. Thin Solid Films 15:87–101

    Article  CAS  Google Scholar 

  24. Tibbitt JM, Shen M, Bell AT (1975) A comparison of r.f. sputtered and plasma polymerized thin films of tetrafluoroethylene. Thin Solid Films 29:85–87. doi:10.1016/0040-6090(75)90187-X

    Article  Google Scholar 

  25. Kylián O, Drábik M, Polonskyi O et al (2011) Deposition of nanostructured fluorocarbon plasma polymer films by RF magnetron sputtering of polytetrafluoroethylene. Thin Solid Films 519:6426–6431. doi:10.1016/j.tsf.2011.04.213

    Article  Google Scholar 

  26. Jafari R, Menini R, Farzaneh M (2010) Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl Surf Sci 257:1540–1543. doi:10.1016/j.apsusc.2010.08.092

    Article  CAS  Google Scholar 

  27. Kim HM, Sohn S, Ahn JS (2013) Transparent and super-hydrophobic properties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat-CVD methods. Surf Coatings Technol 228:S389–S392. doi:10.1016/j.surfcoat.2012.05.085

    Article  CAS  Google Scholar 

  28. Stelmashuk V, Biederman H, Zemek J, Trchova M (2005) Plasma polymer films rf sputtered from PTFE under various argon pressures. Vaccum 77:131–137. doi:10.1016/j.vacuum.2004.08.011

    Article  CAS  Google Scholar 

  29. Drábik M, Polonskyi O, Kylián O et al (2010) Super-hydrophobic coatings prepared by RF magnetron sputtering of PTFE. Plasma Process Polym 7:544–551. doi:10.1002/ppap.200900164

    Article  Google Scholar 

  30. Suzuki Y, Fu H, Abe Y, Kawamura M (2013) Effects of substrate temperature on structure and mechanical properties of sputter deposited fluorocarbon thin films. Vacuum 87:218–221. doi:10.1016/j.vacuum.2012.05.029

    Article  CAS  Google Scholar 

  31. Franco JA, Kentish SE, Perera JM, Stevens GW (2011) Poly(tetrafluoroethylene) sputtered polypropylene membranes for carbon dioxide separation in membrane gas absorption. Ind Eng Chem Res 50:4011–4020. doi:10.1021/ie102019u

    Article  CAS  Google Scholar 

  32. Rastegarpanah A, Mortaheb HR (2016) Surface treatment of polyethersulfone membranes for applying in desalination by direct contact membrane distillation. Desalination 377:99–107. doi:10.1016/j.desal.2015.09.008

    Article  CAS  Google Scholar 

  33. Ma J, Ashfold MNR, Mankelevich YA (2009) Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition. J Appl Phys 105:1–12. doi:10.1063/1.3078032

    Google Scholar 

  34. Rácz G, Kerker S, Kovács Z et al (2014) Theoretical and experimental approaches of liquid entry pressure determination in membrane distillation processes. Period Polytech Chem Eng 58:81–91. doi:10.3311/PPch.2179

    Article  Google Scholar 

  35. Khayet M, Khulbe K, Matsuura T (2004) Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process. J Memb Sci 238:199–211. doi:10.1016/j.memsci.2004.03.036

    Article  CAS  Google Scholar 

  36. Wu YJ, Huang QL, Xiao CF et al (2014) Study on the effects and properties of PVDF/FEP blend porous membrane. Desalination 353:118–124. doi:10.1016/j.desal.2014.09.010

    Article  CAS  Google Scholar 

  37. Vandencasteele N, Nisol B, Viville P et al (2008) Plasma-modified PTFE for biological applications: correlation between protein-resistant properties and surface characteristics. Plasma Process Polym 5:661–671. doi:10.1002/ppap.200700143

    Article  CAS  Google Scholar 

  38. Canal C, Gaboriau F, Villeger S et al (2009) Studies on antibacterial dressings obtained by fluorinated post-discharge plasma. Int J Pharm 367:155–161. doi:10.1016/j.ijpharm.2008.09.038

    Article  CAS  Google Scholar 

  39. Prathyusha T, Reddy CS, Reddy PS, Reddy AS (2014) Effect of sputtering power on the physical properties of dc magnetron sputtered copper oxide thin films. Int J ChemTech Res 6:3349–3352. doi:10.1016/j.matchemphys.2008.02.031

    CAS  Google Scholar 

  40. Baker MA, Fakhouri H, Grilli R et al (2014) Effect of total gas pressure and O2/N2 flow rate on the nanostructure of N-doped TiO2 thin films deposited by reactive sputtering. Thin Solid Films 552:10–17. doi:10.1016/j.tsf.2013.11.111

    Article  CAS  Google Scholar 

  41. Zhang Y, Yang GH, Kang ET et al (2002) Characterization of fluoropolymer films deposited by magnetron sputtering of poly(tetrafluoroethylene) and plasma polymerization of heptadecafluoro-1-decene (HDFD) on (100)-oriented single-crystal silicon substrates. Surf Interface Anal 34:10–18. doi:10.1002/sia.1243

    Article  CAS  Google Scholar 

  42. Srinivas K, Manivel Raja M, Sridhara Rao DV, Kamat SV (2014) Effect of sputtering pressure and power on composition, surface roughness, microstructure and magnetic properties of as-deposited Co2FeSi thin films. Thin Solid Films 558:349–355. doi:10.1016/j.tsf.2014.02.052

    Article  CAS  Google Scholar 

  43. Stelmashuk V, Biederman H, Slavínská D et al (2005) Plasma polymer films rf sputtered from PTFE under various argon pressures. Vacuum 77:131–137. doi:10.1016/j.vacuum.2004.08.011

    Article  CAS  Google Scholar 

  44. Chawla V, Jayaganthan R, Chawla AK, Chandra R (2008) Microstructural characterizations of magnetron sputtered Ti films on glass substrate. J Mater Process Technol 9:3444–3451. doi:10.1016/j.jmatprotec.2008.08.004

    Google Scholar 

  45. Cp B, Zhi-Li Z, Yan-Li D et al (2010) Deposition pressure effect on the surface roughness scaling of microcrystalline silicon films. Chin Phys B 19:106803. doi:10.1088/1674-1056/19/10/106803

    Article  Google Scholar 

  46. Kaganer VM, Jenichen B, Shayduk R et al (2009) Kinetic optimum of Volmer–Weber growth. Phys Rev Lett 102:1–5. doi:10.1103/PhysRevLett.102.016103

    Article  Google Scholar 

  47. Golub MA, Wydeven T, Johnson AL (1998) Similarity of plasma-polymerized tetrafluoroethylene and fluoropolymer films deposited by rf sputtering of poly(tetrafluoroethylene). Langmuir 14:2217–2220

    Article  CAS  Google Scholar 

  48. Bayat A, Ebrahimi M, Nourmohammadi A, Moshfegh AZ (2015) Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity. Appl Surf Sci 341:92–99. doi:10.1016/j.apsusc.2015.02.197

    Article  CAS  Google Scholar 

  49. Becker C, Petersen J, Mertz G et al (2011) High superhydrophobicity achieved on poly(ethylene terephthalate) by innovative laser-assisted magnetron sputtering. J Phys Chem C 115:10675–10681. doi:10.1021/jp200517e

    Article  CAS  Google Scholar 

  50. Jafari R, Momen G, Farzaneh M (2016) Durability enhancement of icephobic fluoropolymer film. J Coatings Technol Res 13:405–412. doi:10.1007/s11998-015-9759-z

    Article  CAS  Google Scholar 

  51. Döhler GH, Dandoloff R, Bilz H (1980) A topological-dynamical model of amorphycity. J Non Cryst Solids 42:87–95. doi:10.1016/0022-3093(80)90010-1

    Article  Google Scholar 

  52. Winder EJ, Gleason KK (2000) Growth and characterization of fluorocarbon thin films grown from trifluoromethane (CHF3) using pulsed-plasma enhanced CVD. J Appl Polym Sci 78:842–849. doi:10.1002/1097-4628(20001024)78:4<842:AID-APP180>3.0.CO;2-J

    Article  CAS  Google Scholar 

  53. Limb SJ, Gleason KK, Edell DJ, Gleason EF (1997) Flexible fluorocarbon wire coatings by pulsed plasma enhanced chemical vapor deposition. J Vac Sci Technol A 15:1814–1818. doi:10.1116/1.580796

    Article  CAS  Google Scholar 

  54. Canulescu S, Molchan IS, Tauziede C et al (2010) Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens. Anal Bioanal Chem 396:2871–2879. doi:10.1007/s00216-009-3366-8

    Article  CAS  Google Scholar 

  55. Habazaki H, Fushimi K, Shimizu K et al (2007) Fast migration of fluoride ions in growing anodic titanium oxide. Electrochem Commun 9:1222–1227. doi:10.1016/j.elecom.2006.12.023

    Article  CAS  Google Scholar 

  56. Roach P, Shirtcliffe NJ, Newton MI (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169:80–105. doi:10.1016/j.cis.2011.08.005

    Article  Google Scholar 

  57. Ding R, Yu Z, ChangYong Z, NingKang H (2011) Study on the porosity of TiO2 films prepared by using magnetron sputtering deposition. J Korean Phys Soc 58:883–885. doi:10.3938/jkps.58.883

    Article  Google Scholar 

  58. Casari CS, Giannuzzi CS, Russo V (2016) Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas. Carbon N Y 104:1–15. doi:10.1016/j.carbon.2016.03.056

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Iran National Science Foundation for their financial support. The French consulate in Iran is acknowledged for awarding the mobility scholarship in France to S. Pedram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Mortaheb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedram, S., Mortaheb, H.R., Fakhouri, H. et al. Polytetrafluoroethylene Sputtered PES Membranes for Membrane Distillation: Influence of RF Magnetron Sputtering Conditions. Plasma Chem Plasma Process 37, 223–241 (2017). https://doi.org/10.1007/s11090-016-9769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9769-3

Keywords

Navigation