Skip to main content
Log in

Abatement of Gaseous Xylene Using Double Dielectric Barrier Discharge Plasma with In Situ UV Light: Operating Parameters and Byproduct Analysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) light with a wavelength of 254 nm was applied to a double dielectric barrier discharge (DDBD) system to decompose of gaseous xylene. The results show that a significantly synergistic effect can be achieved with the introduction of UV light into the DDBD system. When UV light is applied, the system show a 21.8 % increase in its removal efficiency for xylene at 35 kV with an ozone concentration close to 971 ppmv. The CO x (x = CO2 and CO) selectivity of outlet gas rises from 6.54 to 76.2 %. The optimal synergetic effect between UV light and DDBD can be obtained at a peak voltage of 30 kV. The system is robust for humidity, which only slightly reduces the xylene removal efficiency at a high peak voltage (30–35 kV). With the increase of gas flow rate, the removal efficiency for xylene decreases due to a reduced residence time. In addition, the products of xylene degradation were also analyzed. The major products of the degradation were found to be CO2 and H2O while byproducts such as O3 and HCOOH were observed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Duane M, Poma B, Rembges D, Astorga C, Larsen BR (2002) Isoprene and its degradation products as strong ozone precursors in Insubria, Northern Italy. Atmos Environ 36:3867–3879

    Article  CAS  Google Scholar 

  2. Sultana S, Vandenbroucke AM, Leys C, De Geyter N, Morent R (2015) Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: a review. Catalysts 5:718–746

    Article  CAS  Google Scholar 

  3. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  4. Chae JO, Moon SI, Sun HS, Kim KY, Vassiliev VA, Mikholap EM (1999) A study of volatile organic compounds decomposition with the use of non-thermal plasma. KSME Int J 13:647–655

    Google Scholar 

  5. Zhang HB, Li K, Shu CH, Lou ZY, Sun TH, Jia JP (2014) Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor. Chem Eng J 256:107–118

    Article  CAS  Google Scholar 

  6. Ye ZL, Shen Y, Zhang RX, Hou HQ (2008) Destruction of benzene in an air stream by the outer combined plasma photolysis method. J Phys D Appl Phys 41:025201

    Article  Google Scholar 

  7. Assadi AA, Bouzaza A, Merabet S, Wolbert D (2014) Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor: synergetic effect and mass transfer. Chem Eng J 258:119–127

    Article  CAS  Google Scholar 

  8. Palau J, Assadi AA, Penya-Roja JM, Bouzaza A, Wolbert D, Martinez-Soria V (2015) Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge reactors, and their combinations. J Photochem Photobiol A 299:110–117

    Article  CAS  Google Scholar 

  9. Zhang HB, Li K, Sun TH, Jia JP, Lou ZY, Yao SA, Wang G (2015) The combination effect of dielectric barrier discharge (DBD) and TiO2 catalytic process on styrene removal and the analysis of the by-products and intermediates. Res Chem Intermed 41:175–189

    Article  CAS  Google Scholar 

  10. Chang MB, Balbach JH, Rood MJ, Kushner MJ (1991) Removal of SO2 from gas streams using a dielectric barrier discharge and combined plasma photolysis. J Appl Phys 69:4409–4417

    Article  CAS  Google Scholar 

  11. Chang MB, Kushner MJ, Rood MJ (1993) Removal of SO2 and no from gas streams with combined plasma photolysis. J Environ Eng ASCE 119:414–423

    Article  CAS  Google Scholar 

  12. Fang HH, Hou HQ, Xia LY, Shu XH, Zhang RX (2007) A combined plasma photolysis (CPP) method for removal Of CS2 from gas streams at atmospheric pressure. Chemosphere 69:1734–1739

    Article  CAS  Google Scholar 

  13. Huang L, Xia LY, Ge XX, Jing HY, Dong WB, Hou HG (2012) Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure. Chemosphere 88:229–234

    Article  CAS  Google Scholar 

  14. Zhang H, Ji TY, Zhang RX, Hou HQ (2012) Destruction of H2S gas with a combined plasma photolysis (CPP) reactor. Plasma Sci Technol 14:134–139

    Article  CAS  Google Scholar 

  15. Robert P, Sung KJ, Chul A, Soon YY, Demidyuk V (2006) Experimental study of toluene decomposition by combination of barrier discharge plasma and UV light. WIT Trans Ecol Environ 86:401–410 (J. W. S. Longhurst and C. A. Brebbia)

    CAS  Google Scholar 

  16. Zhu CZ, Liu Y, Lu J, Yang Z, Li YX, Chen TH (2015) Decomposition of ethanethiol using dielectric barrier discharge combined with 185 nm UV-light technique. Plasma Chem Plasma Process 35:355–364

    Article  CAS  Google Scholar 

  17. Lee HM, Chang MB (2003) Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chem Plasma Process 23:541–558

    Article  CAS  Google Scholar 

  18. Ruan JJ, Li W, Shi Y, Nie Y, Wang X, Tan TE (2005) Decomposition of simulated odors in municipal wastewater treatment plants by a wire-plate pulse corona reactor. Chemosphere 59:327–333

    Article  CAS  Google Scholar 

  19. Alapi T, Dombi A (2007) Direct VUV photolysis of chlorinated methanes and their mixtures in an oxygen stream using an ozone producing low-pressure mercury vapour lamp. Chemosphere 67:693–701

    Article  CAS  Google Scholar 

  20. Pan H, Su QF, Wei JW, Jian YF (2015) Promotion of nonthermal plasma on the SO2 and H2O tolerance of Co–In/Zeolites for the catalytic reduction of NOx by C3H8 at low temperature. Plasma Chem Plasma Process 35:831–844

    Article  CAS  Google Scholar 

  21. Assadi AA, Bouzaza A, Vallet C, Wolbert D (2014) Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination—synergetic effect and byproducts identification. Chem Eng J 254:124–132

    Article  CAS  Google Scholar 

  22. Taranto R, Frochot D, Pichat P (2007) Combining cold plasma and TiO2 photocatalysis to purify gaseous effluents: a preliminary study using methanol-contaminated air. Ind Eng Chem Res 46:7611–7614

    Article  CAS  Google Scholar 

  23. Huang HB, Ye DQ (2009) Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene. J Hazard Mater 171:535–541

    Article  CAS  Google Scholar 

  24. Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 68:1821–1829

    Article  Google Scholar 

  25. Chen J, Yang JT, Pan H, Su QF, Liu YM, Shi Y (2010) Abatement of malodorants from pesticide factory in dielectric barrier discharges. J Hazard Mater 177:908–913

    Article  CAS  Google Scholar 

  26. Fan X, Zhu TL, Wan YJ, Yan XA (2010) Effects of humidity on the plasma-catalytic removal of low-concentration BTX in air. J Hazard Mater 180:616–621

    Article  CAS  Google Scholar 

  27. Assadi AA, Palau J, Bouzaza A, Penya-Roja J, Martinez-Soriac V, Wolbert D (2014) Abatement of 3-methylbutanal and trimethylamine with combined plasma and photocatalysis in a continuous planar reactor. J Photochem Photobiol A 282:1–8

    Article  CAS  Google Scholar 

  28. Chen J, Su QF, Pan H, Wei JW, Zhang XM, Shi Y (2009) Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire–cylinder pulse corona reactor. Chemosphere 75:261–265

    Article  CAS  Google Scholar 

  29. Guo YF, Ye DQ, Chen KF, Tian YF (2006) Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. Plasma Chem Plasma Process 26:237–249

    Article  CAS  Google Scholar 

  30. Ye ZP, Wang CX, Shao ZH, Ye Q, He Y, Shi Y (2012) A novel dielectric barrier discharge reactor with photocatalytic electrode based on sintered metal fibers for abatement of xylene. J Hazard Mater 241:216–223

    Article  Google Scholar 

  31. Wei BL, Chen YP, Ye MJ, Shao ZH, He Y, Shi Y (2015) Enhanced degradation of gaseous xylene using surface acidized TiO2 catalyst with non-thermal plasmas. Plasma Chem Plasma Process 35:173–186

    Article  CAS  Google Scholar 

  32. Chen JH, Wang PX (2005) Effect of relative humidity on electron distribution and ozone production by DC coronas in air. IEEE Trans Plasma Sci 33:808–812

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China through (Grant Numbers 21450110411, 21476191, 91434110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Shao, Z., Shou, T. et al. Abatement of Gaseous Xylene Using Double Dielectric Barrier Discharge Plasma with In Situ UV Light: Operating Parameters and Byproduct Analysis. Plasma Chem Plasma Process 36, 1501–1515 (2016). https://doi.org/10.1007/s11090-016-9741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9741-2

Keywords

Navigation