Skip to main content
Log in

Plasma Processing Based Synthesis of Functional Nanocarbons

  • Review Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Our recent research has shown that plasma processing techniques, which allow versatile control of both chemical and physical aspects, have considerable potential for the innovative synthesis and functionalization of three varieties of low-dimensional nanocarbons, which show great promise in the development of nanoscience and its applications. In the case of 0-D fullerenes, the mission is the high-yield production of atom (X) encapsulated fullerenes (X@C60). The formation of macro-quantities of charge-exploited Li@C60 and overwhelmingly-high purity spin-exploited N@C60 are realized for the first time by the control of alkali-fullerene and nitrogen double plasmas, respectively. In the case of 1-D carbon nanotubes the challenge is precise structure control, i.e., chirality control of single-walled carbon nanotubes (SWNTs). The extremely narrow-chirality distributed growth of SWNTs is realized with time-programmed and nonmagnetic-catalyzed plasma CVD. As for functionalization of SWNTs, the enhanced p-type C60@SWNTs created under the substrate-bias control in collisionless plasmas are found to be effective for harvesting solar energy in the infrared wavelength range and adapted to the use for multiple exciton generation in solar cells. Concerning 2-D graphene, our aim is to overcome two serious issues for electronics applications. One is the realization of the direct growth of graphene on an insulating (SiO2) substrate by adjusting the growth parameters using non-equilibrium diffusion plasma CVD. The other is the direct fabrication of field-effect transistor device of a narrow-width (≥20 nm) graphene nanoribbon using a new, simple, and scalable method based on rapid heating plasma CVD, which shows a clear transport gap and a high on/off ratio. Finally the prospects for the above-mentioned results are discussed together with ripple effects of the nanocarbon research on the progress of nanoscience and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Meyyapan M (2011) J Phys D Appl Phys 44:174002

    Article  Google Scholar 

  2. Hatakeyama R, Kaneko T, Kato T, Li YF (2011) J Phys D Appl Phys 44:174004

    Article  Google Scholar 

  3. Ostrikov K, Neyts EC, Meyyapan M (2013) Adv Phys 62:113

    Article  CAS  Google Scholar 

  4. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  5. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  7. Yamaguchi T, Bandow S, Iijima S (2004) Chem Phys Lett 389:181

    Article  CAS  Google Scholar 

  8. Wu YH, Qiano PW, Chong TC, Shen ZX (2002) Adv Mater 14:64

    Article  CAS  Google Scholar 

  9. Butler JE, Sumant AV (2008) Chem Vap Deposition 14:145

    Article  CAS  Google Scholar 

  10. Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K (2013) Nature Chem 5:739

    Article  CAS  Google Scholar 

  11. Chai Y, Cuo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, RE Smalley (1991) J Phys Chem 95:7564

    Google Scholar 

  12. Yasutake Y, Shi Z, Okazaki T, Shinohara H, Majima Y (2005) Nano Lett 5:1057

    Article  CAS  Google Scholar 

  13. Harneit W (2002) Phys Rev A 65:032322

    Article  Google Scholar 

  14. Lau PH, Takai K, Wang C, Ju Y, Kim J, Yu Z, Takahashi T, Cho G, Javey A (2013) Nano Lett 13:3864

    Article  CAS  Google Scholar 

  15. Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A, Wu D (2007) Nano Lett 7:2317

    Article  CAS  Google Scholar 

  16. Madani SY, Maderi N, Dissanayake O, Tan A, Seifalian AM (2011) Int J Nanomedicine 6:2963

    CAS  Google Scholar 

  17. Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weismen RB (2003) J Am Chem Soc 125:11186

    Article  CAS  Google Scholar 

  18. Chiang WH, Sankaran RM (2009) Nature Mater 8:882

    Article  CAS  Google Scholar 

  19. Lu YF, Lo ST, Lin JC, Zhang W, Lu JY, Liu FH, Tseng CM, Lee YH, Liang CT, Li LJ (2013) ACS Nano 7:6522

    Article  CAS  Google Scholar 

  20. Ma L, Wang J, Ding F (2013) ChemPhysChem 14:47

    Article  CAS  Google Scholar 

  21. Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Nature 459:820

    Article  CAS  Google Scholar 

  22. Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Nature Nanotech 5:190

    Article  CAS  Google Scholar 

  23. Chen S, Ji H, Chou H, Li Q, Li H, Suk JW, Piner R, Liao L, Cai W, Ruoff RS (2013) Adv Mater 25:2062

    Article  CAS  Google Scholar 

  24. Kim J, Ishihara M, Koga Y, Tsugawa K, Haegawa M, Iijima S (2011) Appl Phys Lett 98:091502

    Article  Google Scholar 

  25. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Nano Lett 9:30

    Article  CAS  Google Scholar 

  26. Hirata T, Hatakeyama R, Mieno T, Sato N (1996) J Vac Sci Technol, A 14:615

    Article  CAS  Google Scholar 

  27. Okada H, Komuro T, Sakai T, Matsuo Y, Ono Y, Omote K, Yokoo K, Kawachi K, Kasama Y, Ono S, Hatakeyama R, Kaneko T, Tobita H (2012) RSC Adv 2:10624

    Article  CAS  Google Scholar 

  28. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) Nature Chem 2:678

    Article  CAS  Google Scholar 

  29. Cho SC, Kaneko T, Ishida H, Hatakeyama R (2012) Appl Phys Express 5:026202

    Article  Google Scholar 

  30. Shiga K, Ohno K, Ohtsuki T, Kawazoe Y (2001) Mater Trans 42:2189

    Article  CAS  Google Scholar 

  31. Umakoshi T, Ishida H, Kaneko T, Hatakeyama R (2011) Plasma Fusion Res 6:1206015

    Article  Google Scholar 

  32. Neyts EC, Bogaerts A (2009) Carbon 47:1028

    Article  CAS  Google Scholar 

  33. Kato T, Jeong G-H, Hirata T, Hatakeyama R, Tohji K, Motomiya K (2003) Chem Phys Lett 381:422

    Article  CAS  Google Scholar 

  34. Kato T, Hatakeyama R (2006) Chem Vapor Depos 12:345

    Article  CAS  Google Scholar 

  35. Kato T, Hatakeyama R (2008) Appl Phys Lett 92:031502

    Article  Google Scholar 

  36. Kato T, Hatakeyama R (2008) J Am Chem Soc 130:8101

    Article  CAS  Google Scholar 

  37. Ding F, Larsson P, Larson JA, Ahuja R, Duan H, Rosen A, Bolton K (2008) Nano Lett 8:463

    Article  CAS  Google Scholar 

  38. Ghorannevis Z, Kato T, Kaneko T, Hatakeyama R (2010) J Am Chem Soc 132:9570

    Article  CAS  Google Scholar 

  39. Miyauchi Y, Chiashi S, Murakami Y, Hayashida Y, Maruyama S (2004) Chem Phys Lett 387:198

    Article  CAS  Google Scholar 

  40. Kato T, Hatakeyama R (2010) ACS Nano 4:7395

    Article  CAS  Google Scholar 

  41. Kim C, Kim B, Lee SM, Jo C, Lee YH (2001) Appl Phys Lett 79:1187

    Article  CAS  Google Scholar 

  42. Hatakeyama R, Kaneko T, Oohara W, Li YF, Kato T, Baba K, Shishido J (2008) Plasma Sources Sci Technol 17:024009

    Article  Google Scholar 

  43. Li YF, Kaneko T, Hatakeyama R (2008) Appl Phys Lett 92:183115

    Article  Google Scholar 

  44. Izumida T, Hatakeyama R, Neo Y, Mimura H, Omote K, Kasama Y (2006) Appl Phys Lett 89:093121

    Article  Google Scholar 

  45. Kato T, Hatakeyama R, Shishido J, Oohara W, Tohji K (2009) Appl Phys Lett 95:083109

    Article  Google Scholar 

  46. Hatakeyama R, Li YF, Kato TY, Kaneko T (2010) Appl Phys Lett 97:013104

    Article  Google Scholar 

  47. Wang S, Khafizov M, Tu X, Zheng M, Karuss TD (2010) Nano Lett 10:2381

    Article  CAS  Google Scholar 

  48. Li YF, Kodama S, Kaneko T, Hatakeyama R (2011) Appl Phys Express 4:065101

    Article  Google Scholar 

  49. Kato T, Hatakeyama R (2012) ACS Nano 6:8508

    Article  CAS  Google Scholar 

  50. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Nano Lett 10:751

    Article  CAS  Google Scholar 

  51. Kato T, Jiao L, Wang X, Wang H, Li X, Zhang L, Hatakeyama R, Dai H (2011) Small 7:574

    Article  CAS  Google Scholar 

  52. Casanovas J, Ricart JM, Rubio J, Illas F (1996) Jimenez-Mateos JM 118:8071

    CAS  Google Scholar 

  53. Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Phys Rev Lett 98:206805

    Article  Google Scholar 

  54. Shimizu T, Haruyama J, Marcano DC, Kosinkin DV, Tour JM, Hirose K, Suenaga K (2010) Nature Nanotech 6:45

    Article  Google Scholar 

  55. Kato T, Hatakeyama R (2012) Nature Nanotech 7:651

    Article  CAS  Google Scholar 

  56. Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Barger C, de Heer WA (2010) Nature Nanotech 5:727

    Article  CAS  Google Scholar 

  57. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Nature 466:470

    Article  CAS  Google Scholar 

  58. Lherbier A, Biel B, Niquet Y-M, Roche S (2008) Phys Rev Lett 100:036803

    Article  Google Scholar 

  59. Koppens FHL, Klauser D, Coish WA, Nowack KC, Kouwenhoven LP, Loss D (2007) Vandersypen LMK 99:106803

    CAS  Google Scholar 

  60. Wang QH, Zadeh KK, Kis A, Coleman JN, Strano MS (2012) Nature Nanotech 7:699

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professors T. Hirata, W. Oohara, G. –H. Jeong, and Dr. Y. Kasama as well as all the relevant students for their collaboration. They would also like to express to Mr. Hiroyasu Ishida their deepest gratitude for his maintenance of the machines and help before, during, and after the experiments, who passed away regrettably indeed on 20th July 2013 and to whom they pay their last respects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikizo Hatakeyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatakeyama, R., Kato, T., Li, Y. et al. Plasma Processing Based Synthesis of Functional Nanocarbons. Plasma Chem Plasma Process 34, 377–402 (2014). https://doi.org/10.1007/s11090-014-9547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9547-z

Keywords

Navigation