Skip to main content

One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications

  • Chapter
  • First Online:
Carbon Nanoparticles and Nanostructures

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Chemical vapor deposition (CVD) is a powerful method to synthesize various carbon nanostructures (e.g., carbon nanotubes). A conventional CVD process has to be carried out at the temperatures over 600 °C. To extend the applications of carbon nanostructures, for example in the semiconductor industry, low-temperature synthesis processes are thus always pursued. In this chapter we review the CVD growth of carbon nanostructures at low temperatures (<450 °C). These growth processes are discussed in detail with respect to the applied catalyst system, carbon source, reaction atmosphere, catalyst faces, morphology control as well as unique structural characteristics of grown products. For the low-temperature CVD growth, catalytic reaction occurring on the low index faces of a metal catalyst is a crucial issue, and the growth is rate-limited by surface diffusion. Instead of the classical Vapor-Liquid-Solid (VLS) growth mechanism, the growth mechanism at low temperatures is interpreted with a novel Vapor-Facet-Solid (VFS) mechanism. Due to their unique features, the synthesized carbon nanostructures are promising to be applied for interconnects in large-scale integrated circuits, field emission, microwave adsorption, and as the anode material of lithium ion secondary battery, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). doi:10.1038/354056a0

    Article  Google Scholar 

  2. J. Hone, M.C. Llaguno, N.M. Nemes, A.T. Johnson, J.E. Fischer, D.A. Walters, M.J. Casavant, J. Schmidt, R.E. Smalley, Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films. Appl. Phys. Lett. 77(5), 666–668 (2000). doi:10.1063/1.127079

    Article  Google Scholar 

  3. M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000). doi:10.1103/PhysRevLett.84.5552

    Article  Google Scholar 

  4. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Optical properties of single-wall carbon nanotubes. Synth. Met. 103(1–3), 2555–2558 (1999). doi:10.1016/s0379-6779(98)00278-1

    Article  Google Scholar 

  5. J.L. Hutchison, N.A. Kiselev, E.P. Krinichnaya, A.V. Krestinin, R.O. Loutfy, A.P. Morawsky, V.E. Muradyan, E.D. Obraztsova, J. Sloan, S.V. Terekhov, D.N. Zakharov, Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39(5), 761–770 (2001). doi:10.1016/s0008-6223(00)00187-1

    Article  Google Scholar 

  6. E.G. Gamaly, T.W. Ebbesen, Mechanism of carbon nanotube formation in the arc-discharge. Phys. Rev. B. 52(3), 2083–2089 (1995). doi:10.1103/PhysRevB.52.2083

    Article  Google Scholar 

  7. C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A Mater. Sci. Process. 72(5), 573–580 (2001). doi:10.1007/s003390100761

    Article  Google Scholar 

  8. Y. Zhang, S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl. Phys. Lett. 75(20), 3087–3089 (1999). doi:10.1063/1.125239

    Article  Google Scholar 

  9. A. Tanaka, S.H. Yoon, I. Mochida, Formation of fine Fe–Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers. Carbon 42(7), 1291–1298 (2004). doi:10.1016/j.carbon.2004.01.029

    Article  Google Scholar 

  10. J.H. Xia, X. Jiang, C.L. Jia, C. Dong, Hexahedral nanocementites catalyzing the growth of carbon nanohelices. Appl. Phys. Lett. 92(6), 063121 (2008). doi:10.1063/1.2842410

    Article  Google Scholar 

  11. S. Motojima, Q.Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys. 85(7), 3919–3921 (1999). doi:10.1063/1.369765

    Article  Google Scholar 

  12. G.Y. Zhang, X. Jiang, E.G. Wang, Tubular graphite cones. Science 300(5618), 472–474 (2003). doi:10.1126/science.1082264

    Article  Google Scholar 

  13. X.S. Qi, W. Zhong, Y. Deng, C.T. Au, Y.W. Du, Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe–Cu nanoparticles at 450 °C. J. Phys. Chem. C 113(36), 15934–15940 (2009). doi:10.1021/jp905387v

    Article  Google Scholar 

  14. A.M. Cassell, J.A. Raymakers, J. Kong, H.J. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103(31), 6484–6492 (1999). doi:10.1021/jp990957s

    Article  Google Scholar 

  15. E. Couteau, K. Hernadi, J.W. Seo, L. Thien-Nga, C. Miko, R. Gaal, L. Forro, CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378(1–2), 9–17 (2003). doi:10.1016/s0009-2614(03)01218-1

    Article  Google Scholar 

  16. Y.A. Kim, T. Hayashi, S. Naokawa, T. Yanaisawa, M. Endo, Comparative study of herringbone and stacked-cup carbon nanofibers. Carbon 43(14), 3005–3008 (2005). doi:10.1016/j.carbon.2005.06.037

    Article  Google Scholar 

  17. Y.A. Zhu, Z.J. Sui, T.J. Zhao, Y.C. Dai, Z.M. Cheng, W.K. Yuan, Modeling of fishbone-type carbon nanofibers: a theoretical study. Carbon 43(8), 1694–1699 (2005). doi:10.1016/j.carbon.2005.02.011

    Article  Google Scholar 

  18. A. de Lucas, P.B. Garcia, A. Garrido, A. Romero, J.L. Valverde, Catalytic synthesis of carbon nanofibers with different graphene plane alignments using Ni deposited on iron pillared clays. Appl. Catal. A Gen. 301(1), 123–132 (2006). doi:10.1016/j.apcata.2005.11.026

    Article  Google Scholar 

  19. H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 88(10), 6072–6074 (2000). doi:10.1063/1.1320024

    Article  Google Scholar 

  20. C.J. Lee, J. Park, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl. Phys. Lett. 77(21), 3397–3399 (2000). doi:10.1063/1.1320851

    Article  Google Scholar 

  21. C.J. Lee, J.H. Park, J. Park, Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 323(5–6), 560–565 (2000). doi:10.1016/s0009-2614(00)00548-0

    Article  Google Scholar 

  22. M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo, Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 7(8), 2234–2238 (2007). doi:10.1021/nl070681x

    Article  Google Scholar 

  23. J.P. Tu, L.P. Zhu, K. Hou, S.Y. Guo, Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 41(6), 1257–1263 (2003). doi:10.1016/s0008-6223(03)00047-2

    Article  Google Scholar 

  24. Z.W. Pan, S.S. Xie, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chem. Phys. Lett. 299(1), 97–102 (1999). doi:10.1016/s0009-2614(98)01240-8

    Article  Google Scholar 

  25. M.J. de Andrede, M.D. Lima, C.P. Bergmann, G.D. Ramminger, N.M. Balzaretti, T.M.H. Costa, M.R. Gallas, Carbon nanotube/silica composites obtained by sol-gel and high-pressure techniques. Nanotechnology 19(26), 265607 (2008). doi:10.1088/0957-4484/19/26/265607

    Article  Google Scholar 

  26. R.R. Bacsa, C. Laurent, A. Peigney, W.S. Bacsa, T. Vaugien, A. Rousset, High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323(5–6), 566–571 (2000). doi:10.1016/s0009-2614(00)00558-3

    Article  Google Scholar 

  27. J.P. Pinheiro, M.C. Schouler, P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I. Growth versus catalyst state. Carbon 41(15), 2949–2959 (2003). doi:10.1016/s0008-6223(03)00410-x

    Article  Google Scholar 

  28. Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105(46), 11424–11431 (2001). doi:10.1021/jp012085b

    Article  Google Scholar 

  29. D. Venegoni, P. Serp, R. Feurer, Y. Kihn, C. Vahlas, P. Kalck, Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40(10), 1799–1807 (2002). doi:10.1016/s0008-6223(02)00057-x

    Article  Google Scholar 

  30. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A. Fudala, A.A. Lucas, Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 17(5–6), 416–423 (1996). doi:10.1016/s0144-2449(96)00088-7

    Article  Google Scholar 

  31. H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett. 77(1), 79–81 (2000). doi:10.1063/1.126883

    Article  Google Scholar 

  32. Y. Li, J. Liu, Y.Q. Wang, Z.L. Wang, Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13(3), 1008–1014 (2001). doi:10.1021/cm000787s

    Article  Google Scholar 

  33. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B. 106(10), 2429–2433 (2002). doi:10.1021/jp0142278

    Article  Google Scholar 

  34. Y. Qin, Z.K. Zhang, Z.L. Cui, Helical carbon nanofibers with a symmetric growth mode. Carbon 42(10), 1917–1922 (2004). doi:10.1016/j.carbon.2004.03.020

    Article  Google Scholar 

  35. N.G. Shang, X. Jiang, Large-sized tubular graphite cones with nanotube tips. Appl. Phys. Lett. 87(16), 163102 (2005). doi:10.1063/1.2093919

    Article  Google Scholar 

  36. N.G. Shang, W.I. Milne, X. Jiang, Tubular graphite cones with single-crystal nanotips and their antioxygenic properties. J. Am. Chem. Soc. 129(28), 8907–8911 (2007). doi:10.1021/ja071830g

    Article  Google Scholar 

  37. G.Y. Zhang, X.C. Ma, D.Y. Zhong, E.G. Wang, Polymerized carbon nitride nanobells. J. Appl. Phys. 91(11), 9324–9332 (2002). doi:10.1063/1.1476070

    Article  Google Scholar 

  38. Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79(19), 3155–3157 (2001). doi:10.1063/1.1415412

    Article  Google Scholar 

  39. A. Ural, Y.M. Li, H.J. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 81(18), 3464–3466 (2002). doi:10.1063/1.1518773

    Article  Google Scholar 

  40. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E). Appl. Phys. Lett. 4(5), 89 (1964). doi:10.1063/1.1753975

    Article  Google Scholar 

  41. H. Kanzow, A. Ding, Formation mechanism of single-wall carbon nanotubes on liquid-metal particles. Phys. Rev. B 60(15), 11180–11186 (1999). doi:10.1103/PhysRevB.60.11180

    Article  Google Scholar 

  42. M.A. Ermakova, D.Y. Ermakov, A.L. Chuvilin, G.G. Kuvshinov, Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments. J. Catal. 201(2), 183–197 (2001). doi:10.1006/jcat.2001.3243

    Article  Google Scholar 

  43. Y. Shibuta, S. Maruyama, Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chem. Phys. Lett. 382(3–4), 381–386 (2003). doi:10.1016/j.cplett.2003.10.080

    Article  Google Scholar 

  44. S. Tsunekawa, S. Ito, Y. Kawazoe, J.T. Wang, Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3(7), 871–875 (2003). doi:10.1021/ni034129t

    Article  Google Scholar 

  45. S.S. Fan, W.J. Liang, H.Y. Dang, N. Franklin, T. Tombler, M. Chapline, H.J. Dai, Carbon nanotube arrays on silicon substrates and their possible application. Physica E 8(2), 179–183 (2000). doi:10.1016/s1386-9477(00)00136-3

    Article  Google Scholar 

  46. R.T.K. Baker, Catalytic growth of carbon filaments. Carbon 27(3), 315–323 (1989). doi:10.1016/0008-6223(89)90062-6

    Article  Google Scholar 

  47. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.C. Charlier, Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett. 87(27), 275504 (2001). doi:10.1103/PhysRevLett.87.275504

    Article  Google Scholar 

  48. N.M. Rodriguez, A. Chambers, R.T.K. Baker, Catalytic engineering of carbon nanostructures. Langmuir 11(10), 3862–3866 (1995). doi:10.1021/la00010a042

    Article  Google Scholar 

  49. R.T. Yang, J.P. Chen, Mechanism of carbon-filament growth on metal-catalysts. J. Catal. 115(1), 52–64 (1989). doi:10.1016/0021-9517(89)90006-7

    Article  Google Scholar 

  50. J.A. Lobo, G.H. Geiger, Thermodynamics and solubility of carbon in ferrite and ferritic Fe–Mo alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 7(9), 1347–1357 (1976). doi:10.1007/bf02658820

    Article  Google Scholar 

  51. C.P. Deck, K. Vecchio, Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon 44(2), 267–275 (2006). doi:10.1016/j.carbon.2005.07.023

    Article  Google Scholar 

  52. T. Maruyama, K. Sato, Y. Mizutani, K. Tanioku, T. Shiraiwa, S. Naritsuka, Low-temperature synthesis of single-walled carbon nanotubes by alcohol gas source growth in high vacuum. J. Nanosci. Nanotechnol. 10(6), 4095–4101 (2010). doi:10.1166/jnn.2010.2000

    Article  Google Scholar 

  53. J. Highfield, Y.S. Loo, Z. Zhong, B. Grushko, Thermogravimetric studies of carbon nanofiber formation from methane at low temperature over Ni-based skeletal catalysts and the effect of substrate pre-carburization. Carbon 45(13), 2597–2607 (2007). doi:10.1016/j.carbon.2007.08.012

    Article  Google Scholar 

  54. D. He, J. Bai, Acetylene-enhanced growth of carbon nanotubes on ceramic microparticles for multi-scale hybrid structures. Chem. Vap. Depos. 17(4–6), 98–106 (2011). doi:10.1002/cvde.201006878

    Article  Google Scholar 

  55. A. Magrez, J.W. Seo, R. Smajda, B. Korbely, J.C. Andresen, M. Mionic, S. Casimirius, L. Forro, Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction. ACS Nano 4(7), 3702–3708 (2010). doi:10.1021/nn100279j

    Article  Google Scholar 

  56. N. Halonen, A. Sapi, L. Nagy, R. Puskas, A.-R. Leino, J. Maklin, J. Kukkola, G. Toth, M.-C. Wu, H.-C. Liao, W.-F. Su, A. Shchukarev, J.-P. Mikkola, A. Kukovecz, Z. Konya, K. Kordas, Low-temperature growth of multi-walled carbon nanotubes by thermal CVD. Physica Status Solidi B Basic Solid State Phys. 248(11), 2500–2503 (2011). doi:10.1002/pssb.201100137

    Article  Google Scholar 

  57. O. Pitkanen, N. Halonen, A.R. Leino, J. Maklin, A. Dombovari, J.H. Lin, G. Toth, K. Kordas, Low-temperature growth of carbon nanotubes on bi- and tri-metallic catalyst templates. Top. Catal. 56(9–10), 522–526 (2013). doi:10.1007/s11244-013-0047-9

    Article  Google Scholar 

  58. Y.M. Shyu, F.C.N. Hong, Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition. Mater. Chem. Phys. 72(2), 223–227 (2001). doi:10.1016/s0254-0584(01)00441-2

    Article  Google Scholar 

  59. Y.M. Shyu, F.C.N. Hong, The effects of pre-treatment and catalyst composition on growth of carbon nanofibers at low temperature. Diam. Relat. Mater. 10(3–7), 1241–1245 (2001). doi:10.1016/s0925-9635(00)00550-1

    Article  Google Scholar 

  60. K. Aoki, T. Yamamoto, H. Furuta, T. Ikuno, S. Honda, M. Furuta, K. Oura, T. Hirao, Low-temperature growth of carbon nanofiber by thermal chemical vapor deposition using CuNi catalyst. Jpn. J. Appl. Phys. Part 1 Regular Pap. Brief Commun. Rev. Pap. 45(6A), 5329–5331 (2006). doi:10.1143/jjap.45.5329

    Article  Google Scholar 

  61. N. Na, D.Y. Kim, Y.-G. So, Y. Ikuhara, S. Noda, Simple and engineered process yielding carbon nanotube arrays with 1.2 × 1013 cm−2 wall density on conductive underlayer at 400 °C. Carbon 81, 773–781 (2015). doi:10.1016/j.carbon.2014.10.023

    Article  Google Scholar 

  62. K. Tanioku, T. Maruyama, S. Naritsuka, Low temperature growth of carbon nanotubes on Si substrates in high vacuum. Diam. Relat. Mater. 17(4–5), 589–593 (2008). doi:10.1016/j.diamond.2007.10.028

    Article  Google Scholar 

  63. X. Li, Z. Xu, One-step catalytic growth of carbon nanofiber arrays vertically aligned on carbon substrate. Mater. Res. Bull. 47(6), 1557–1561 (2012). doi:10.1016/j.materresbull.2012.02.027

    Article  Google Scholar 

  64. Y. Ma, C. Weimer, N. Yang, L. Zhang, T. Staedler, X. Jiang, Low-temperature growth of carbon nanofiber using a vapor–facet–solid process. Mater. Today Commun. 2, e55–e61 (2015). doi:10.1016/j.mtcomm.2014.12.003

    Article  Google Scholar 

  65. B. Yu, S. Wang, Q. Zhang, Y. He, H. Huang, J. Zou, Ni3C-assisted growth of carbon nanofibres 300 °C by thermal CVD. Nanotechnology 25(32), 325602 (2014). doi:10.1088/0957-4484/25/32/325602

    Article  Google Scholar 

  66. W.-H. Chiang, R.M. Sankaran, Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth. Adv. Mater. 20(24), 4857–4861 (2008). doi:10.1002/adma.200801006

    Article  Google Scholar 

  67. Y. Ma, X. Sun, N. Yang, J. Xia, L. Zhang, X. Jiang, Shape-controlled growth of carbon nanostructures: yield and mechanism. Chem. Eur. J. 21, 12370–12375 (2015). doi:10.1002/chem.201500440

    Article  Google Scholar 

  68. Y. Qin, Q. Zhang, Z.L. Cui, Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J. Catal. 223(2), 389–394 (2004). doi:10.1016/j.jcat.2004.02.004

    Article  Google Scholar 

  69. J.H. Xia, X. Jiang, C.L. Jia, The size effect of catalyst on the growth of helical carbon nanofibers. Appl. Phys. Lett. 95(22), 223110 (2009). doi:10.1063/1.3271031

    Article  Google Scholar 

  70. Y. Qin, M. Eggers, T. Staedler, X. Jiang, Symmetric growth of carbon nanosheets on Cu nanowires by a surface diffusion mechanism. Nanotechnology 18(34), 345607 (2007). doi:10.1088/0957-4484/18/34/345607

    Article  Google Scholar 

  71. Y. Qin, X. Jiang, Z.L. Cui, Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis. J. Phys. Chem. B 109(46), 21749–21754 (2005). doi:10.1021/jp054412b

    Article  Google Scholar 

  72. X. Sun, Y.W. Zhang, R. Si, C.H. Yan, Metal (mn Co, and Cu) oxide nanocrystals from simple formate precursors. Small 1(11), 1081–1086 (2005). doi:10.1002/smll.200500119

    Article  Google Scholar 

  73. J.H. Xia, Growth of carbon nanofibers studied by using transmission electron microscopy. Shaker Verlag, D-52018 Aachen (2010)

    Google Scholar 

  74. A.J. Hart, A.H. Slocum, L. Royer, Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation. Carbon 44(2), 348–359 (2006). doi:10.1016/j.carbon.2005.07.008

    Article  Google Scholar 

  75. Y.J. Tian, Z. Hu, Y. Yang, X.Z. Wang, X. Chen, H. Xu, Q. Wu, W.J. Ji, Y. Chen, In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc. 126(4), 1180–1183 (2004). doi:10.1021/ja037561i

    Article  Google Scholar 

  76. B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett. 2(8), 895–898 (2002). doi:10.1021/nl025634d

    Article  Google Scholar 

  77. A.J. Hart, A.H. Slocum, Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B. 110(16), 8250–8257 (2006). doi:10.1021/jp055498b

    Article  Google Scholar 

  78. M. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, Growth of carbon nanotubes by chemical vapor deposition. Diam. Relat. Mater. 10(3–7), 1235–1240 (2001). doi:10.1016/s0925-9635(00)00446-5

    Article  Google Scholar 

  79. A.V. Vasenkov, D. Sengupta, M. Frenklach, Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth. J. Phys. Chem. B. 113(7), 1877–1882 (2009). doi:10.1021/jp808346h

    Article  Google Scholar 

  80. G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. Oliver, T. Zimrin, A.J. Hart, D. Aurbach, C.V. Thompson, Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50(11), 4002–4009 (2012). doi:10.1016/j.carbon.2012.04.043

    Article  Google Scholar 

  81. D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95(5), 4 (2005). doi:10.1103/PhysRevLett.95.056104

    Article  Google Scholar 

  82. S. Hussain, R. Amade, E. Bertran, Study of CNTs structural evolution during water assisted growth and transfer methodology for electrochemical applications. Mater. Chem. Phys. 148(3), 914–922 (2014). doi:10.1016/j.matchemphys.2014.08.070

    Article  Google Scholar 

  83. M. Bansal, C. Lal, R. Srivastava, M.N. Kamalasanan, L.S. Tanwar, Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method. Physica B Condens. Matter 405(7), 1745–1749 (2010). doi:10.1016/j.physb.2010.01.031

    Article  Google Scholar 

  84. C.-S. Chen, C.-K. Hsieh, Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell. Jpn. J. Appl. Phys. 53(11), 11RE02 (2014). doi:10.7567/jjap.53.11re02

    Google Scholar 

  85. I.H. Son, H.J. Song, S. Kwon, A. Bachmatiuk, S.J. Lee, A. Benayad, J.H. Park, J.-Y. Choi, H. Chang, M.H. Ruemmeli, CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiOx. ACS Nano 8(9), 9224–9232 (2014). doi:10.1021/nn504342e

    Article  Google Scholar 

  86. J.Q. Huang, Q. Zhang, M.Q. Zhao, F. Wei, Process intensification by CO2 for high quality carbon nanotube forest growth: double-walled carbon nanotube convexity or single-walled carbon nanotube bowls? Nano Res. 2(11), 872–881 (2009). doi:10.1007/s12274-009-9088-6

    Article  Google Scholar 

  87. Z. Zhu, H. Jiang, T. Susi, A.G. Nasibulin, E.I. Kauppinen, The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n, m) distribution. J. Am. Chem. Soc. 133(5), 1224–1227 (2011). doi:10.1021/ja1087634

    Article  Google Scholar 

  88. T. Susi, A.G. Nasibulin, P. Ayala, Y. Tian, Z. Zhu, H. Jiang, C. Roquelet, D. Garrot, J.-S. Lauret, E.I. Kauppinen, High quality SWCNT synthesis in the presence of NH3 using a vertical flow aerosol reactor. Physica Status Solidi B Basic Solid State Phys. 246(11–12), 2507–2510 (2009). doi:10.1002/pssb.200982338

    Article  Google Scholar 

  89. A.F. Carley, P.R. Davies, K.R. Harikumar, R.V. Jones, M.W. Roberts, Oxygen states at magnesium and copper surfaces revealed by scanning tunneling microscopy and surface reactivity. Top. Catal. 24(1–4), 51–59 (2003). doi:10.1023/B:TOCA.0000003076.82649.c4

    Article  Google Scholar 

  90. P.R. Davies, D. Edwards, D. Richards, Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu (110) surfaces. J. Phys. Chem. C 113(24), 10333–10336 (2009). doi:10.1021/jp903042f

    Article  Google Scholar 

  91. Y. Ma, Vapor-facet-solid (VFS) mechanism: a new route for catalytic CVD growth of one-dimensional nanostructures at low temperature. Schriftenreihe der Arbeitsgruppe des Lehrstuhls für Oberfächen- und Werkstofftechnologie im Institut für Werkstofftechnik. 4 (2015)

    Google Scholar 

  92. J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P. Alivisatos, Linearly polarized emission from colloidal semiconductor quantum rods. Science 292(5524), 2060–2063 (2001). doi:10.1126/science.1060810

    Article  Google Scholar 

  93. A.X. Yin, X.Q. Min, Y.W. Zhang, C.H. Yan, Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011). doi:10.1021/ja200329p

    Article  Google Scholar 

  94. S. Mostafa, F. Behafarid, J.R. Croy, L.K. Ono, L. Li, J.C. Yang, A.I. Frenkel, B.R. Cuenya, Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132(44), 15714–15719 (2010). doi:10.1021/ja106679z

    Article  Google Scholar 

  95. H. Zhang, M.S. Jin, Y.J. Xiong, B. Lim, Y.N. Xia, Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 46(8), 1783–1794 (2013). doi:10.1021/ar300209w

    Article  Google Scholar 

  96. R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J. Phys. Chem. B. 109(26), 12663–12676 (2005). doi:10.1021/jp051066p

    Article  Google Scholar 

  97. Y.H. Leng, Y.H. Zhang, T. Liu, M. Suzuki, X.G. Li, Synthesis of single crystalline triangular and hexagonal Ni nanosheets with enhanced magnetic properties. Nanotechnology 17(6), 1797–1800 (2006). doi:10.1088/0957-4484/17/6/042

    Article  Google Scholar 

  98. Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie International Edition 45(21), 3414–3439 (2006). doi:10.1002/anie.200503821

    Article  Google Scholar 

  99. Y.N. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition 48(1), 60–103 (2009). doi:10.1002/anie.200802248

    Article  Google Scholar 

  100. A.R. Tao, S. Habas, P.D. Yang, Shape control of colloidal metal nanocrystals. Small 4(3), 310–325 (2008). doi:10.1002/smll.200701295

    Article  Google Scholar 

  101. E.F. Kukovitsky, S.G. L’Vov, N.A. Sainov, VLS-growth of carbon nanotubes from the vapor. Chem. Phys. Lett. 317(1–2), 65–70 (2000). doi:10.1016/s0009-2614(99)01299-3

    Article  Google Scholar 

  102. B.C. Satishkumar, P.J. Thomas, A. Govindaraj, C.N.R. Rao, Y-junction carbon nanotubes. Appl. Phys. Lett. 77(16), 2530–2532 (2000). doi:10.1063/1.1319185

    Article  Google Scholar 

  103. J. Li, C. Papadopoulos, J. Xu, Nanoelectronics—growing Y-junction carbon nanotubes. Nature 402(6759), 253–254 (1999). doi:10.1038/46214

    Google Scholar 

  104. H. Takikawa, M. Yatsuki, R. Miyano, M. Nagayama, T. Sakakibara, S. Itoh, Y. Ando, Amorphous carbon fibrilliform nanomaterials prepared by chemical vapor deposition. Jpn. J. Appl. Phys. Part 1 Regular Pap. Short Notes Rev. Pap. 39(9A), 5177–5179 (2000). doi:10.1143/jjap.39.5177

    Google Scholar 

  105. K. Inomata, N. Aoki, H. Koinuma, Production of fullerenes by low-temperature plasma chemical-vapor-deposition under atmospheric-pressure. Jpn. J. Appl. Phys. Part 2 Lett. 33(2A), L197–L199 (1994). doi:10.1143/jjap.33.l197

    Google Scholar 

  106. Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Electrochemical properties of fuel cell catalysts loaded on carbon nanomaterials with different geometries. Mater. Today Commun. 3, 96–103 (2015). doi:10.1016/j.mtcomm.2015.02.003

    Article  Google Scholar 

  107. G. Wang, G. Ran, G. Wan, P. Yang, Z. Gao, S. Lin, C. Fu, Y. Qin, Size-selective catalytic growth of nearly 100 % pure carbon nanocoils with copper nanoparticles produced by atomic layer deposition. ACS Nano 8(5), 5330–5338 (2014). doi:10.1021/nn501709h

    Article  Google Scholar 

  108. G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). doi:10.1021/nn304630h

    Article  Google Scholar 

  109. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A.A. Lucas, Fe-catalyzed carbon nanotube formation. Carbon 34(10), 1249–1257 (1996). doi:10.1016/0008-6223(96)00074-7

    Article  Google Scholar 

  110. D. Chen, K.O. Christensen, E. Ochoa-Fernandez, Z.X. Yu, B. Totdal, N. Latorre, A. Monzon, A. Holmen, Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J. Catal. 229(1), 82–96 (2005). doi:10.1016/j.jcat.2004.10.017

    Article  Google Scholar 

  111. P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295(5562), 2053–2055 (2002). doi:10.1126/science.1069325

    Article  Google Scholar 

  112. C.A. Wert, Diffusion coefficient of C in α-iron. Phys. Rev. 79(4), 601–605 (1950). doi:10.1103/PhysRev.79.601

    Article  Google Scholar 

  113. J.J. Lander, H.E. Kern, A.L. Beach, Solubility and diffusion coefficient of carbon in nickel-reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 23(12), 1305–1309 (1952). doi:10.1063/1.1702064

    Article  Google Scholar 

  114. B.C. Stipe, M.A. Rezaei, W. Ho, Single-molecule vibrational spectroscopy and microscopy. Science 280(5370), 1732–1735 (1998). doi:10.1126/science.280.5370.1732

    Article  Google Scholar 

  115. B.C. Stipe, M.A. Rezaei, W. Ho, Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81(6), 1263–1266 (1998). doi:10.1103/PhysRevLett.81.1263

    Article  Google Scholar 

  116. J. Szanyi, M.T. Paffett, Dimerization and trimerization of acetylene over a model Sn/Pt catalyst. J. Am. Chem. Soc. 117(3), 1034–1042 (1995). doi:10.1021/ja00108a020

    Article  Google Scholar 

  117. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004). doi:10.1038/nature02278

    Article  Google Scholar 

  118. T.E. Fischer, S.R. Kelemen, Influence of the substrate structure on the bonding of chemisorbed acetylene to transition metal surfaces. Surf. Sci. 74(47), 47–53 (1978). doi:10.1016/0039-6028(78)90270-4

    Article  Google Scholar 

  119. J. Dvorak, J. Hrbek, Adsorbate ordering effects in the trimerization reaction of acetylene on Cu (100). J. Phys. Chem. B. 102(47), 9443–9450 (1998). doi:10.1021/jp981956n

    Article  Google Scholar 

  120. J.R. Lomas, C.J. Baddeley, M.S. Tikhov, R.M. Lambert, Ethyne cyclization to benzene over Cu (110). Langmuir 11(8), 3048–3053 (1995). doi:10.1021/la00008a033

    Article  Google Scholar 

  121. G. Kyriakou, J. Kim, M.S. Tikhov, N. Macleod, R.M. Lambert, Acetylene coupling on Cu (111): formation of butadiene, benzene, and cyclooctatetraene. J. Phys. Chem. B. 109(21), 10952–10956 (2005). doi:10.1021/jp044213c

    Article  Google Scholar 

  122. W. Alter, D. Borgmann, M. Stadelmann, M. Worn, G. Wedler, Interaction of acetylene with films of the transition-metals iron, nickel, and palladium. J. Am. Chem. Soc. 116(22), 10041–10049 (1994). doi:10.1021/ja00101a024

    Article  Google Scholar 

  123. F. Zaera, R.B. Hall, High-resolution electron energy loss spectroscopy and thermal programmed desorption studies of the chemisorption and thermal decomposition of ethylene and acetylene on Ni (100) single-crystal surfaces. J. Phys. Chem. 91(16), 4318–4323 (1987). doi:10.1021/j100300a023

    Article  Google Scholar 

  124. J.C. Bertolini, J. Massardier, G. Dalmaiimelik, Evolution of adsorbed species during C2H2 adsorption on Ni (111) in relation to their vibrational spectra. J. Chem. Soc. Faraday Trans. I. 74, 1720–1725 (1978). doi:10.1039/f19787401720

    Article  Google Scholar 

  125. J.A. Stroscio, S.R. Bare, W. Ho, The chemisorption and decomposition of ethylene and acetylene on Ni (110). Surf. Sci. 148(2–3), 499–525 (1984). doi:10.1016/0039-6028(84)90596-x

    Article  Google Scholar 

  126. A. Benninghoven, P. Beckmann, D. Greifendorf, M. Schemmer, Investigation of surface-reactions by SIMS and TDMS—interaction of ethylene and acetylene with hydrogen on polycrystalline nickel. Appl. Surf. Sci. 6(3–4), 288–296 (1980). doi:10.1016/0378-5963(80)90018-5

    Article  Google Scholar 

  127. P.M. Mattlis, The oligomerization of acetylenes induced by metals of the nickel triad. Pure Appl. Chem. 30(3–4), 427–448 (1972). doi:10.1351/pac197230030427

    Google Scholar 

  128. D.L. Trimm, I.O.Y. Liu, N.W. Cant, The oligornerization of acetylene in hydrogen over Ni/SiO2 catalysts: product distribution and pathways. J. Mol. Catal. A Chem. 288(1–2), 63–74 (2008). doi:10.1016/j.molcata.2008.03.022

    Article  Google Scholar 

  129. B. Lesiak, A. Jablonski, W. Palczewska, I. Kulszewiczbajer, M. Zagorska, Identification of the carbonaceous residues at nickel and platinum surfaces on the basis of the carbon Kll spectra. Surf. Interf. Anal. 18(6), 430–438 (1992). doi:10.1002/sia.740180610

    Article  Google Scholar 

  130. S. Hofmann, G. Csanyi, A.C. Ferrari, M.C. Payne, J. Robertson, Surface diffusion: the low activation energy path for nanotube growth. Phys. Rev. Lett. 95(3), 036101 (2005). doi:10.1103/PhysRevLett.95.036101

    Article  Google Scholar 

  131. O.V. Yazyev, A. Pasquarello, Effect of metal elements in catalytic growth of carbon nanotubes. Phys. Rev. Lett. 100(15), 4 (2008). doi:10.1103/PhysRevLett.100.156102

    Article  Google Scholar 

  132. K. Bartsch, K. Biedermann, T. Gemming, A. Leonhardt, On the diffusion-controlled growth of multiwalled carbon nanotubes. J. Appl. Phys. 97(11), 7 (2005). doi:10.1063/1.1922067

    Article  Google Scholar 

  133. Z.Y. Juang, J.F. Lai, C.H. Weng, J.H. Lee, H.J. Lai, T.S. Lai, C.H. Tsai, On the kinetics of carbon nanotube growth by thermal CVD method. Diam. Relat. Mater. 13(11–12), 2140–2146 (2004). doi:10.1016/j.diamond.2004.03.007

    Article  Google Scholar 

  134. O.A. Louchev, Y. Sato, H. Kanda, Multiwall carbon nanotubes: self-organization and inhibition of step-flow growth kinetics. J. Appl. Phys. 89(6), 3438–3446 (2001). doi:10.1063/1.1347407

    Article  Google Scholar 

  135. S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari, J. Robertson, Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diam. Relat. Mater. 13(4–8), 1171–1176 (2004). doi:10.1016/j.diamond.2003.11.046

    Article  Google Scholar 

  136. O.A. Louchev, T. Laude, Y. Sato, H. Kanda, Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J. Chem. Phys. 118(16), 7622–7634 (2003). doi:10.1063/1.1562195

    Article  Google Scholar 

  137. O.A. Louchev, Formation mechanism of pentagonal defects and bamboo-like structures in carbon nanotube growth mediated by surface diffusion. Physica Status Solidi A Appl. Res. 193(3), 585–596 (2002). doi:10.1002/1521-396x(200210)193:3<585:aid-pssa585>3.0.co;2-y

    Article  Google Scholar 

  138. O.A. Louchev, Y. Sato, H. Kanda, Growth mechanism of carbon nanotube forests by chemical vapor deposition. Appl. Phys. Lett. 80(15), 2752–2754 (2002). doi:10.1063/1.1468266

    Article  Google Scholar 

  139. D.C. Li, L.M. Dai, S.M. Huang, A.W.H. Mau, Z.L. Wang, Structure and growth of aligned carbon nanotube films by pyrolysis. Chem. Phys. Lett. 316(5–6), 349–355 (2000). doi:10.1016/s0009-2614(99)01334-2

    Article  Google Scholar 

  140. S.A. Dayeh, E.T. Yu, D. Wang, III-V nanowire growth mechanism: V/III ratio and temperature effects. Nano Lett. 7(8), 2486–2490 (2007). doi:10.1021/nl0712668

    Article  Google Scholar 

  141. P.B. Amama, O. Ogebule, M.R. Maschmann, T.D. Sands, T.S. Fisher, Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chem. Commun. 27, 2899–2901 (2006). doi:10.1039/b602623k

    Article  Google Scholar 

  142. H.Y. Wang, J.J. Moore, Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon 50(3), 1235–1242 (2012). doi:10.1016/j.carbon.2011.10.041

    Article  Google Scholar 

  143. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 83(1), 135–137 (2003). doi:10.1063/1.1589187

    Article  Google Scholar 

  144. T.M. Minea, S. Point, A. Granier, M. Touzeau, Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 85(7), 1244–1246 (2004). doi:10.1063/1.1781352

    Article  Google Scholar 

  145. M. Meyyappan, A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J. Phys. D Appl. Phys. 42(21), 15 (2009). doi:10.1088/0022-3727/42/21/213001

    Article  Google Scholar 

  146. Y. Ishikawa, K. Ishizuka, Growth of single-walled carbon nanotubes by hot-filament assisted chemical vapor deposition below 500 °C. Appl. Phys. Express 2(4), 3 (2009). doi:10.1143/apex.2.045001

    Google Scholar 

  147. N.G. Shang, Y.Y. Tan, V. Stolojan, P. Papakonstantinou, S.R.P. Silva, High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50), 6 (2010). doi:10.1088/0957-4484/21/50/505604

    Article  Google Scholar 

  148. Y. Ishikawa, H. Jinbo, Synthesis of multiwalled carbon nanotubes at temperatures below 300 °C by hot-filament assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(12–15), L394–L397 (2005). doi:10.1143/jjap.44.l394

    Google Scholar 

  149. Y. Awano, S. Sato, M. Nihei, T. Sakai, Y. Ohno, T. Mizutani, Carbon nanotubes for VLSI: interconnect and transistor applications. Proc. IEEE 98(12), 2015–2031 (2010). doi:10.1109/JPROC.2010.2068030

    Article  Google Scholar 

  150. C.L. Long, D.P. Qi, T. Wei, J. Yan, L.L. Jiang, Z.J. Fan, Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 24(25), 3953–3961 (2014). doi:10.1002/adfm.201304269

    Article  Google Scholar 

  151. N.P. Wickramaratne, J.T. Xu, M. Wang, L. Zhu, L.M. Dai, M. Jaroniec, Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26(9), 2820–2828 (2014). doi:10.1021/cm5001895

    Article  Google Scholar 

  152. W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, X.L. Feng, K. Mullen, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angewandte Chemie-International Edition 53(6), 1570–1574 (2014). doi:10.1002/anie.201307319

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support of this work by the German Research Foundation (DFG JI22/16-1, DFG JI22/21-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, Y., Yang, N., Jiang, X. (2016). One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications. In: Yang, N., Jiang, X., Pang, DW. (eds) Carbon Nanoparticles and Nanostructures. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-28782-9_2

Download citation

Publish with us

Policies and ethics